Cargando…
A cross-institutional evaluation on breast cancer phenotyping NLP algorithms on electronic health records
OBJECTIVE: Transformer-based language models are prevailing in the clinical domain due to their excellent performance on clinical NLP tasks. The generalizability of those models is usually ignored during the model development process. This study evaluated the generalizability of CancerBERT, a Transf...
Autores principales: | Zhou, Sicheng, Wang, Nan, Wang, Liwei, Sun, Ju, Blaes, Anne, Liu, Hongfang, Zhang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480628/ https://www.ncbi.nlm.nih.gov/pubmed/37680211 http://dx.doi.org/10.1016/j.csbj.2023.08.018 |
Ejemplares similares
-
CancerBERT: a cancer domain-specific language model for extracting breast cancer phenotypes from electronic health records
por: Zhou, Sicheng, et al.
Publicado: (2022) -
Electronic Health Record Phenotypes for Precision Medicine: Perspectives and Caveats From Treatment of Breast Cancer at a Single Institution
por: Breitenstein, Matthew K., et al.
Publicado: (2018) -
Clinical documentation variations and NLP system portability: a case study in asthma birth cohorts across institutions
por: Sohn, Sunghwan, et al.
Publicado: (2017) -
An NLP tool for data extraction from electronic health records: COVID-19 mortalities and comorbidities
por: BuHamra, Sana S., et al.
Publicado: (2022) -
Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation
por: Wen, Andrew, et al.
Publicado: (2019)