Cargando…
SUPREME: multiomics data integration using graph convolutional networks
To pave the road towards precision medicine in cancer, patients with similar biology ought to be grouped into same cancer subtypes. Utilizing high-dimensional multiomics datasets, integrative approaches have been developed to uncover cancer subtypes. Recently, Graph Neural Networks have been discove...
Autores principales: | Kesimoglu, Ziynet Nesibe, Bozdag, Serdar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481254/ https://www.ncbi.nlm.nih.gov/pubmed/37680392 http://dx.doi.org/10.1093/nargab/lqad063 |
Ejemplares similares
-
Crinet: A computational tool to infer genome-wide competing endogenous RNA (ceRNA) interactions
por: Kesimoglu, Ziynet Nesibe, et al.
Publicado: (2021) -
PANDA2: protein function prediction using graph neural networks
por: Zhao, Chenguang, et al.
Publicado: (2022) -
Identification of Cancer Driver Genes by Integrating Multiomics Data with Graph Neural Networks
por: Song, Hongzhi, et al.
Publicado: (2023) -
GraphPart: homology partitioning for biological sequence analysis
por: Teufel, Felix, et al.
Publicado: (2023) -
A new graph-based clustering method with application to single-cell RNA-seq data from human pancreatic islets
por: Wu, Hao, et al.
Publicado: (2021)