Cargando…
The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence
The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the ta...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481262/ https://www.ncbi.nlm.nih.gov/pubmed/37526993 http://dx.doi.org/10.1107/S1600577523005684 |
_version_ | 1785101936134979584 |
---|---|
author | Hwang, In-Hui Kelly, Shelly D. Chan, Maria K. Y. Stavitski, Eli Heald, Steve M. Han, Sang-Wook Schwarz, Nicholas Sun, Cheng-Jun |
author_facet | Hwang, In-Hui Kelly, Shelly D. Chan, Maria K. Y. Stavitski, Eli Heald, Steve M. Han, Sang-Wook Schwarz, Nicholas Sun, Cheng-Jun |
author_sort | Hwang, In-Hui |
collection | PubMed |
description | The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kβ XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d–3p electron exchange force and Kβ emission core-hole lifetime. |
format | Online Article Text |
id | pubmed-10481262 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-104812622023-09-07 The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence Hwang, In-Hui Kelly, Shelly D. Chan, Maria K. Y. Stavitski, Eli Heald, Steve M. Han, Sang-Wook Schwarz, Nicholas Sun, Cheng-Jun J Synchrotron Radiat Research Papers The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kβ XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d–3p electron exchange force and Kβ emission core-hole lifetime. International Union of Crystallography 2023-08-01 /pmc/articles/PMC10481262/ /pubmed/37526993 http://dx.doi.org/10.1107/S1600577523005684 Text en © In-Hui Hwang et al. 2023 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Papers Hwang, In-Hui Kelly, Shelly D. Chan, Maria K. Y. Stavitski, Eli Heald, Steve M. Han, Sang-Wook Schwarz, Nicholas Sun, Cheng-Jun The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence |
title | The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence |
title_full | The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence |
title_fullStr | The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence |
title_full_unstemmed | The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence |
title_short | The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence |
title_sort | axeap2 program for kβ x-ray emission spectra analysis using artificial intelligence |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481262/ https://www.ncbi.nlm.nih.gov/pubmed/37526993 http://dx.doi.org/10.1107/S1600577523005684 |
work_keys_str_mv | AT hwanginhui theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT kellyshellyd theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT chanmariaky theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT stavitskieli theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT healdstevem theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT hansangwook theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT schwarznicholas theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT sunchengjun theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT hwanginhui axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT kellyshellyd axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT chanmariaky axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT stavitskieli axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT healdstevem axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT hansangwook axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT schwarznicholas axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence AT sunchengjun axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence |