Cargando…

The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence

The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the ta...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, In-Hui, Kelly, Shelly D., Chan, Maria K. Y., Stavitski, Eli, Heald, Steve M., Han, Sang-Wook, Schwarz, Nicholas, Sun, Cheng-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481262/
https://www.ncbi.nlm.nih.gov/pubmed/37526993
http://dx.doi.org/10.1107/S1600577523005684
_version_ 1785101936134979584
author Hwang, In-Hui
Kelly, Shelly D.
Chan, Maria K. Y.
Stavitski, Eli
Heald, Steve M.
Han, Sang-Wook
Schwarz, Nicholas
Sun, Cheng-Jun
author_facet Hwang, In-Hui
Kelly, Shelly D.
Chan, Maria K. Y.
Stavitski, Eli
Heald, Steve M.
Han, Sang-Wook
Schwarz, Nicholas
Sun, Cheng-Jun
author_sort Hwang, In-Hui
collection PubMed
description The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kβ XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d–3p electron exchange force and Kβ emission core-hole lifetime.
format Online
Article
Text
id pubmed-10481262
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-104812622023-09-07 The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence Hwang, In-Hui Kelly, Shelly D. Chan, Maria K. Y. Stavitski, Eli Heald, Steve M. Han, Sang-Wook Schwarz, Nicholas Sun, Cheng-Jun J Synchrotron Radiat Research Papers The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kβ XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d–3p electron exchange force and Kβ emission core-hole lifetime. International Union of Crystallography 2023-08-01 /pmc/articles/PMC10481262/ /pubmed/37526993 http://dx.doi.org/10.1107/S1600577523005684 Text en © In-Hui Hwang et al. 2023 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
spellingShingle Research Papers
Hwang, In-Hui
Kelly, Shelly D.
Chan, Maria K. Y.
Stavitski, Eli
Heald, Steve M.
Han, Sang-Wook
Schwarz, Nicholas
Sun, Cheng-Jun
The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence
title The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence
title_full The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence
title_fullStr The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence
title_full_unstemmed The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence
title_short The AXEAP2 program for Kβ X-ray emission spectra analysis using artificial intelligence
title_sort axeap2 program for kβ x-ray emission spectra analysis using artificial intelligence
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481262/
https://www.ncbi.nlm.nih.gov/pubmed/37526993
http://dx.doi.org/10.1107/S1600577523005684
work_keys_str_mv AT hwanginhui theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT kellyshellyd theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT chanmariaky theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT stavitskieli theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT healdstevem theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT hansangwook theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT schwarznicholas theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT sunchengjun theaxeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT hwanginhui axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT kellyshellyd axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT chanmariaky axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT stavitskieli axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT healdstevem axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT hansangwook axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT schwarznicholas axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence
AT sunchengjun axeap2programforkbxrayemissionspectraanalysisusingartificialintelligence