Cargando…
Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells
Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb(2)O(3) core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are su...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481348/ https://www.ncbi.nlm.nih.gov/pubmed/37680485 http://dx.doi.org/10.1016/j.isci.2023.107683 |
_version_ | 1785101956767809536 |
---|---|
author | Seemann, Klaus M. Kovács, András Schmid, Thomas E. Ilicic, Katarina Multhoff, Gabriele Dunin-Borkowski, Rafal E. Michelagnoli, Caterina Cieplicka-Oryńczak, Natalia Jana, Soumen Colombi, Giacomo Jentschel, Michael Schneider, Claus M. Kuhn, Bernd |
author_facet | Seemann, Klaus M. Kovács, András Schmid, Thomas E. Ilicic, Katarina Multhoff, Gabriele Dunin-Borkowski, Rafal E. Michelagnoli, Caterina Cieplicka-Oryńczak, Natalia Jana, Soumen Colombi, Giacomo Jentschel, Michael Schneider, Claus M. Kuhn, Bernd |
author_sort | Seemann, Klaus M. |
collection | PubMed |
description | Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb(2)O(3) core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life β-radiation from (175)Yb, (177)Yb, and (177)Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the β-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications. |
format | Online Article Text |
id | pubmed-10481348 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104813482023-09-07 Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells Seemann, Klaus M. Kovács, András Schmid, Thomas E. Ilicic, Katarina Multhoff, Gabriele Dunin-Borkowski, Rafal E. Michelagnoli, Caterina Cieplicka-Oryńczak, Natalia Jana, Soumen Colombi, Giacomo Jentschel, Michael Schneider, Claus M. Kuhn, Bernd iScience Article Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb(2)O(3) core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life β-radiation from (175)Yb, (177)Yb, and (177)Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the β-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications. Elsevier 2023-08-18 /pmc/articles/PMC10481348/ /pubmed/37680485 http://dx.doi.org/10.1016/j.isci.2023.107683 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Seemann, Klaus M. Kovács, András Schmid, Thomas E. Ilicic, Katarina Multhoff, Gabriele Dunin-Borkowski, Rafal E. Michelagnoli, Caterina Cieplicka-Oryńczak, Natalia Jana, Soumen Colombi, Giacomo Jentschel, Michael Schneider, Claus M. Kuhn, Bernd Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells |
title | Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells |
title_full | Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells |
title_fullStr | Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells |
title_full_unstemmed | Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells |
title_short | Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells |
title_sort | neutron-activated, plasmonically excitable fe-pt-yb(2)o(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481348/ https://www.ncbi.nlm.nih.gov/pubmed/37680485 http://dx.doi.org/10.1016/j.isci.2023.107683 |
work_keys_str_mv | AT seemannklausm neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT kovacsandras neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT schmidthomase neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT ilicickatarina neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT multhoffgabriele neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT duninborkowskirafale neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT michelagnolicaterina neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT cieplickaorynczaknatalia neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT janasoumen neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT colombigiacomo neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT jentschelmichael neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT schneiderclausm neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells AT kuhnbernd neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells |