Cargando…

Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells

Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb(2)O(3) core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are su...

Descripción completa

Detalles Bibliográficos
Autores principales: Seemann, Klaus M., Kovács, András, Schmid, Thomas E., Ilicic, Katarina, Multhoff, Gabriele, Dunin-Borkowski, Rafal E., Michelagnoli, Caterina, Cieplicka-Oryńczak, Natalia, Jana, Soumen, Colombi, Giacomo, Jentschel, Michael, Schneider, Claus M., Kuhn, Bernd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481348/
https://www.ncbi.nlm.nih.gov/pubmed/37680485
http://dx.doi.org/10.1016/j.isci.2023.107683
_version_ 1785101956767809536
author Seemann, Klaus M.
Kovács, András
Schmid, Thomas E.
Ilicic, Katarina
Multhoff, Gabriele
Dunin-Borkowski, Rafal E.
Michelagnoli, Caterina
Cieplicka-Oryńczak, Natalia
Jana, Soumen
Colombi, Giacomo
Jentschel, Michael
Schneider, Claus M.
Kuhn, Bernd
author_facet Seemann, Klaus M.
Kovács, András
Schmid, Thomas E.
Ilicic, Katarina
Multhoff, Gabriele
Dunin-Borkowski, Rafal E.
Michelagnoli, Caterina
Cieplicka-Oryńczak, Natalia
Jana, Soumen
Colombi, Giacomo
Jentschel, Michael
Schneider, Claus M.
Kuhn, Bernd
author_sort Seemann, Klaus M.
collection PubMed
description Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb(2)O(3) core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life β-radiation from (175)Yb, (177)Yb, and (177)Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the β-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications.
format Online
Article
Text
id pubmed-10481348
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104813482023-09-07 Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells Seemann, Klaus M. Kovács, András Schmid, Thomas E. Ilicic, Katarina Multhoff, Gabriele Dunin-Borkowski, Rafal E. Michelagnoli, Caterina Cieplicka-Oryńczak, Natalia Jana, Soumen Colombi, Giacomo Jentschel, Michael Schneider, Claus M. Kuhn, Bernd iScience Article Magnetic nanoparticles can be functionalized in many ways for biomedical applications. Here, we combine four advantageous features in a novel Fe-Pt-Yb(2)O(3) core-shell nanoparticle. (a) The nanoparticles have a size of 10 nm allowing them to diffuse through neuronal tissue. (b) The particles are superparamagnetic after synthesis and ferromagnetic after annealing, enabling directional control by magnetic fields, enhance NMRI contrast, and hyperthermia treatment. (c) After neutron-activation of the shell, they carry low-energetic, short half-life β-radiation from (175)Yb, (177)Yb, and (177)Lu. (d) Additionally, the particles can be optically visualized by plasmonic excitation and luminescence. To demonstrate the potential of the particles for cancer treatment, we exposed cultured human glioblastoma cells (LN-18) to non-activated and activated particles to confirm that the particles are internalized, and that the β-radiation of the radioisotopes incorporated in the neutron-activated shell of the nanoparticles kills more than 98% of the LN-18 cancer cells, promising for future anti-cancer applications. Elsevier 2023-08-18 /pmc/articles/PMC10481348/ /pubmed/37680485 http://dx.doi.org/10.1016/j.isci.2023.107683 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Seemann, Klaus M.
Kovács, András
Schmid, Thomas E.
Ilicic, Katarina
Multhoff, Gabriele
Dunin-Borkowski, Rafal E.
Michelagnoli, Caterina
Cieplicka-Oryńczak, Natalia
Jana, Soumen
Colombi, Giacomo
Jentschel, Michael
Schneider, Claus M.
Kuhn, Bernd
Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells
title Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells
title_full Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells
title_fullStr Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells
title_full_unstemmed Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells
title_short Neutron-activated, plasmonically excitable Fe-Pt-Yb(2)O(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells
title_sort neutron-activated, plasmonically excitable fe-pt-yb(2)o(3) nanoparticles delivering anti-cancer radiation against human glioblastoma cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481348/
https://www.ncbi.nlm.nih.gov/pubmed/37680485
http://dx.doi.org/10.1016/j.isci.2023.107683
work_keys_str_mv AT seemannklausm neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT kovacsandras neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT schmidthomase neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT ilicickatarina neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT multhoffgabriele neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT duninborkowskirafale neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT michelagnolicaterina neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT cieplickaorynczaknatalia neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT janasoumen neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT colombigiacomo neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT jentschelmichael neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT schneiderclausm neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells
AT kuhnbernd neutronactivatedplasmonicallyexcitablefeptyb2o3nanoparticlesdeliveringanticancerradiationagainsthumanglioblastomacells