Cargando…
IHCP: interpretable hepatitis C prediction system based on black-box machine learning models
BACKGROUND: Hepatitis C is a prevalent disease that poses a high risk to the human liver. Early diagnosis of hepatitis C is crucial for treatment and prognosis. Therefore, developing an effective medical decision system is essential. In recent years, many computational methods have been proposed to...
Autores principales: | Fan, Yongxian, Lu, Xiqian, Sun, Guicong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481489/ https://www.ncbi.nlm.nih.gov/pubmed/37674125 http://dx.doi.org/10.1186/s12859-023-05456-0 |
Ejemplares similares
-
An interpretable machine learning framework for diagnosis and prognosis of COVID-19
por: Fan, Yongxian, et al.
Publicado: (2023) -
1150 Intrahepatic cholestasis of pregnancy (IHCP) during the era of COVID-19
por: Soffer, Marti D., et al.
Publicado: (2021) -
DeepASDPred: a CNN-LSTM-based deep learning method for Autism spectrum disorders risk RNA identification
por: Fan, Yongxian, et al.
Publicado: (2023) -
Opening the black box: interpretable machine learning for predictor finding of metabolic syndrome
por: Zhang, Yan, et al.
Publicado: (2022) -
Machine learning for psychiatry: getting doctors at the black box?
por: Hedderich, Dennis M., et al.
Publicado: (2020)