Cargando…
Recipes for when physics fails: recovering robust learning of physics informed neural networks
Physics-informed neural networks (PINNs) have been shown to be effective in solving partial differential equations by capturing the physics induced constraints as a part of the training loss function. This paper shows that a PINN can be sensitive to errors in training data and overfit itself in dyna...
Autores principales: | Bajaj, Chandrajit, McLennan, Luke, Andeen, Timothy, Roy, Avik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481851/ https://www.ncbi.nlm.nih.gov/pubmed/37680302 http://dx.doi.org/10.1088/2632-2153/acb416 |
Ejemplares similares
-
Computer Algebra Recipes for Mathematical Physics
por: Enns, Richard H
Publicado: (2005) -
When Neural Activity Fails to Reveal Causal Contributions
por: Fakhar, Kayson, et al.
Publicado: (2023) -
Neural crest migration: trailblazing ahead
por: Kulesa, Paul M., et al.
Publicado: (2015) -
Deep neural networks to recover unknown physical parameters from oscillating time series
por: Garcon, Antoine, et al.
Publicado: (2022) -
Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
por: Berrone, S., et al.
Publicado: (2023)