Cargando…
A probabilistic deep learning model of inter-fraction anatomical variations in radiotherapy
Objective. In radiotherapy, the internal movement of organs between treatment sessions causes errors in the final radiation dose delivery. To assess the need for adaptation, motion models can be used to simulate dominant motion patterns and assess anatomical robustness before delivery. Traditionally...
Autores principales: | Pastor-Serrano, Oscar, Habraken, Steven, Hoogeman, Mischa, Lathouwers, Danny, Schaart, Dennis, Nomura, Yusuke, Xing, Lei, Perkó, Zoltán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481950/ https://www.ncbi.nlm.nih.gov/pubmed/36958058 http://dx.doi.org/10.1088/1361-6560/acc71d |
Ejemplares similares
-
Reducing the Risk of Secondary Lung Cancer in Treatment Planning of Accelerated Partial Breast Irradiation
por: Hoekstra, Nienke, et al.
Publicado: (2020) -
A multicentre comparison of the dosimetric impact of inter- and intra-fractional anatomical variations in fractionated cervix cancer brachytherapy
por: Nesvacil, Nicole, et al.
Publicado: (2013) -
Intra- and inter-fraction breath-hold variations and margins for radiotherapy of abdominal targets
por: Ehrbar, Stefanie, et al.
Publicado: (2023) -
Quantifying intra- and inter-fractional motion in breast radiotherapy
por: Jones, Scott, et al.
Publicado: (2015) -
Impact of Inter-fractional Anatomical Changes on Dose Distributions in Passive Carbon-Ion Radiotherapy for Prostate Cancer: Comparison of Vertical and Horizontal Fields
por: Yokoyama, Ayaka, et al.
Publicado: (2020)