Cargando…
Standardizing and Centralizing Datasets for Efficient Training of Agricultural Deep Learning Models
In recent years, deep learning models have become the standard for agricultural computer vision. Such models are typically fine-tuned to agricultural tasks using model weights that were originally fit to more general, non-agricultural datasets. This lack of agriculture-specific fine-tuning potential...
Autores principales: | Joshi, Amogh, Guevara, Dario, Earles, Mason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482164/ https://www.ncbi.nlm.nih.gov/pubmed/37680999 http://dx.doi.org/10.34133/plantphenomics.0084 |
Ejemplares similares
-
ACHENY: A standard Chenopodiaceae image dataset for deep learning models
por: Heidary-Sharifabad, Ahmad, et al.
Publicado: (2021) -
CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture
por: Zheng, Yang-Yang, et al.
Publicado: (2019) -
Non-destructive Plant Biomass Monitoring With High Spatio-Temporal Resolution via Proximal RGB-D Imagery and End-to-End Deep Learning
por: Buxbaum, Nicolas, et al.
Publicado: (2022) -
An annotated image dataset of medically and forensically important flies for deep learning model training
por: Ong, Song-Quan, et al.
Publicado: (2022) -
Lite and Efficient Deep Learning Model for Bearing Fault Diagnosis Using the CWRU Dataset
por: Yoo, Yubin, et al.
Publicado: (2023)