Cargando…
Structure-based prediction of nucleic acid binding residues by merging deep learning- and template-based approaches
Accurate prediction of nucleic binding residues is essential for the understanding of transcription and translation processes. Integration of feature- and template-based strategies could improve the prediction of these key residues in proteins. Nevertheless, traditional hybrid algorithms have been s...
Autores principales: | Jiang, Zheng, Shen, Yue-Yue, Liu, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482303/ https://www.ncbi.nlm.nih.gov/pubmed/37672551 http://dx.doi.org/10.1371/journal.pcbi.1011428 |
Ejemplares similares
-
Structure-based deep learning for binding site detection in nucleic acid macromolecules
por: Kozlovskii, Igor, et al.
Publicado: (2021) -
Template-based prediction of protein structure with deep learning
por: Zhang, Haicang, et al.
Publicado: (2020) -
SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues
por: Yang, Xiaoxia, et al.
Publicado: (2015) -
GraphBind: protein structural context embedded rules learned by hierarchical graph neural networks for recognizing nucleic-acid-binding residues
por: Xia, Ying, et al.
Publicado: (2021) -
Dissecting and predicting different types of binding sites in nucleic acids based on structural information
por: Jiang, Zheng, et al.
Publicado: (2021)