Cargando…

4-phenylbutyric acid re-trafficking hERG/G572R channel protein by modulating the endoplasmic reticulum stress-associated chaperones and endoplasmic reticulum-associated degradation gene

BACKGROUND: Long QT syndrome type 2 (LQT2) is caused by mutations in the KCNH2/human ether-à-go-go-related gene (hERG). Some hERG genetic mutation-associated diseases are alleviated by hERG-specific drug chaperones (glycerol, dimethyl sulfoxide, trimethylamine N-oxide, thapsigargin), delayed rectifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Wen, Cai, Dihui, Fu, Yin, Zheng, Zequn, Huang, Xiaoyan, Khouzam, Rami N., Song, Yongfei, Lian, Jiangfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482650/
https://www.ncbi.nlm.nih.gov/pubmed/37691654
http://dx.doi.org/10.21037/jtd-23-1252
Descripción
Sumario:BACKGROUND: Long QT syndrome type 2 (LQT2) is caused by mutations in the KCNH2/human ether-à-go-go-related gene (hERG). Some hERG genetic mutation-associated diseases are alleviated by hERG-specific drug chaperones (glycerol, dimethyl sulfoxide, trimethylamine N-oxide, thapsigargin), delayed rectifier K(+) current (IKr) blockers methanesulfonanilide E4031, the antihistamine astemizole, or the prokinetic drug cisapride, and the anti-arrhythmic drug quinidine. Meanwhile, many in vivo and in vitro studies have reported the efficacy of 4-phenylbutyric acid (4-PBA) in diseases with inherited genetic mutations. This study aims to explore potential therapeutic agents for hERG/G572R mutated ion channel. METHODS: pcDNA3/hERG [wild type (WT)]-FLAG and pcDNA3/hERG (G572R)-FLAG plasmids were transfected into HEK293 cells. A western blot (WB) experiment was conducted to analyze protein expression. Quantitative real-time polymerase chain reaction (qPCR) was used to analyze the messenger RNA (mRNA) expression levels in the WT/G572R heterozygous HEK293 cell model treated with or without 4-PBA. The interaction between WT/G572R and BIP (GRP78), GRP94, and 3-hydroxy-3-methylglutaryl coenzyme A reductase degradation protein 1 (HRD1) was tested by co-immunoprecipitation (co-IP). To investigate the effect of 4-PBA on the WT/G572R channel current, we used electrophysiological assays (patch-clamp electrophysiological recordings). RESULTS: The results showed that WT/G572R activated the ATF6 pathway in the endoplasmic reticulum stress (ERS), the ERS response markers GRP78, GRP94, and calreticulin (CRT)/calnexin (CNX), and HRD1, which decreased after application of the ERS inhibitor 4-PBA. The results of co-IP confirmed that the ability of hERG interacted with GRP78, GRP94, and HRD1. Moreover, 4-PBA increased the current of WT/G572R and reversed the gating kinetics of the WT/G572R channel. CONCLUSIONS: 4-PBA corrects hERG channel transport defects by inhibiting excessive ERS and the endoplasmic reticulum-associated degradation (ERAD)-related gene E3 ubiquitin ligase HRD1. Additionally, 4-PBA improved WT/G572R channel current. 4-PBA is expected to be developed as a new treatment method for LQT2.