Cargando…
Alignment of spatial genomics data using deep Gaussian processes
Spatially resolved genomic technologies have allowed us to study the physical organization of cells and tissues, and promise an understanding of local interactions between cells. However, it remains difficult to precisely align spatial observations across slices, samples, scales, individuals and tec...
Autores principales: | Jones, Andrew, Townes, F. William, Li, Didong, Engelhardt, Barbara E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482692/ https://www.ncbi.nlm.nih.gov/pubmed/37592182 http://dx.doi.org/10.1038/s41592-023-01972-2 |
Ejemplares similares
-
Optimizing the design of spatial genomic studies
por: Jones, Andrew, et al.
Publicado: (2023) -
Nonnegative spatial factorization applied to spatial genomics
por: Townes, F. William, et al.
Publicado: (2022) -
Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds
por: Li, Didong, et al.
Publicado: (2023) -
Spatial Modeling of Precipitation Based on Data-Driven Warping of Gaussian Processes
por: Agou, Vasiliki D., et al.
Publicado: (2022) -
Clustering gene expression time series data using an infinite Gaussian process mixture model
por: McDowell, Ian C., et al.
Publicado: (2018)