Cargando…
Earth’s evolving geodynamic regime recorded by titanium isotopes
Earth’s mantle has a two-layered structure, with the upper and lower mantle domains separated by a seismic discontinuity at about 660 km (refs. (1,2)). The extent of mass transfer between these mantle domains throughout Earth’s history is, however, poorly understood. Continental crust extraction res...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482698/ https://www.ncbi.nlm.nih.gov/pubmed/37495699 http://dx.doi.org/10.1038/s41586-023-06304-0 |
Sumario: | Earth’s mantle has a two-layered structure, with the upper and lower mantle domains separated by a seismic discontinuity at about 660 km (refs. (1,2)). The extent of mass transfer between these mantle domains throughout Earth’s history is, however, poorly understood. Continental crust extraction results in Ti-stable isotopic fractionation, producing isotopically light melting residues(3–7). Mantle recycling of these components can impart Ti isotope variability that is trackable in deep time. We report ultrahigh-precision (49)Ti/(47)Ti ratios for chondrites, ancient terrestrial mantle-derived lavas ranging from 3.8 to 2.0 billion years ago (Ga) and modern ocean island basalts (OIBs). Our new Ti bulk silicate Earth (BSE) estimate based on chondrites is 0.052 ± 0.006‰ heavier than the modern upper mantle sampled by normal mid-ocean ridge basalts (N-MORBs). The (49)Ti/(47)Ti ratio of Earth’s upper mantle was chondritic before 3.5 Ga and evolved to a N-MORB-like composition between approximately 3.5 and 2.7 Ga, establishing that more continental crust was extracted during this epoch. The +0.052 ± 0.006‰ offset between BSE and N-MORBs requires that <30% of Earth’s mantle equilibrated with recycled crustal material, implying limited mass exchange between the upper and lower mantle and, therefore, preservation of a primordial lower-mantle reservoir for most of Earth’s geologic history. Modern OIBs record variable (49)Ti/(47)Ti ratios ranging from chondritic to N-MORBs compositions, indicating continuing disruption of Earth’s primordial mantle. Thus, modern-style plate tectonics with high mass transfer between the upper and lower mantle only represents a recent feature of Earth’s history. |
---|