Cargando…

Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report

BACKGROUND: Prediction of treatment outcomes is a key step in improving the treatment of major depressive disorder (MDD). The Canadian Biomarker Integration Network in Depression (CAN-BIND) aims to predict antidepressant treatment outcomes through analyses of clinical assessment, neuroimaging, and b...

Descripción completa

Detalles Bibliográficos
Autores principales: Sajjadian, Mehri, Uher, Rudolf, Ho, Keith, Hassel, Stefanie, Milev, Roumen, Frey, Benicio N., Farzan, Faranak, Blier, Pierre, Foster, Jane A., Parikh, Sagar V., Müller, Daniel J., Rotzinger, Susan, Soares, Claudio N., Turecki, Gustavo, Taylor, Valerie H., Lam, Raymond W., Strother, Stephen C., Kennedy, Sidney H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482706/
https://www.ncbi.nlm.nih.gov/pubmed/36004538
http://dx.doi.org/10.1017/S0033291722002124
_version_ 1785102231345823744
author Sajjadian, Mehri
Uher, Rudolf
Ho, Keith
Hassel, Stefanie
Milev, Roumen
Frey, Benicio N.
Farzan, Faranak
Blier, Pierre
Foster, Jane A.
Parikh, Sagar V.
Müller, Daniel J.
Rotzinger, Susan
Soares, Claudio N.
Turecki, Gustavo
Taylor, Valerie H.
Lam, Raymond W.
Strother, Stephen C.
Kennedy, Sidney H.
author_facet Sajjadian, Mehri
Uher, Rudolf
Ho, Keith
Hassel, Stefanie
Milev, Roumen
Frey, Benicio N.
Farzan, Faranak
Blier, Pierre
Foster, Jane A.
Parikh, Sagar V.
Müller, Daniel J.
Rotzinger, Susan
Soares, Claudio N.
Turecki, Gustavo
Taylor, Valerie H.
Lam, Raymond W.
Strother, Stephen C.
Kennedy, Sidney H.
author_sort Sajjadian, Mehri
collection PubMed
description BACKGROUND: Prediction of treatment outcomes is a key step in improving the treatment of major depressive disorder (MDD). The Canadian Biomarker Integration Network in Depression (CAN-BIND) aims to predict antidepressant treatment outcomes through analyses of clinical assessment, neuroimaging, and blood biomarkers. METHODS: In the CAN-BIND-1 dataset of 192 adults with MDD and outcomes of treatment with escitalopram, we applied machine learning models in a nested cross-validation framework. Across 210 analyses, we examined combinations of predictive variables from three modalities, measured at baseline and after 2 weeks of treatment, and five machine learning methods with and without feature selection. To optimize the predictors-to-observations ratio, we followed a tiered approach with 134 and 1152 variables in tier 1 and tier 2 respectively. RESULTS: A combination of baseline tier 1 clinical, neuroimaging, and molecular variables predicted response with a mean balanced accuracy of 0.57 (best model mean 0.62) compared to 0.54 (best model mean 0.61) in single modality models. Adding week 2 predictors improved the prediction of response to a mean balanced accuracy of 0.59 (best model mean 0.66). Adding tier 2 features did not improve prediction. CONCLUSIONS: A combination of clinical, neuroimaging, and molecular data improves the prediction of treatment outcomes over single modality measurement. The addition of measurements from the early stages of treatment adds precision. Present results are limited by lack of external validation. To achieve clinically meaningful prediction, the multimodal measurement should be scaled up to larger samples and the robustness of prediction tested in an external validation dataset.
format Online
Article
Text
id pubmed-10482706
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-104827062023-09-08 Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report Sajjadian, Mehri Uher, Rudolf Ho, Keith Hassel, Stefanie Milev, Roumen Frey, Benicio N. Farzan, Faranak Blier, Pierre Foster, Jane A. Parikh, Sagar V. Müller, Daniel J. Rotzinger, Susan Soares, Claudio N. Turecki, Gustavo Taylor, Valerie H. Lam, Raymond W. Strother, Stephen C. Kennedy, Sidney H. Psychol Med Original Article BACKGROUND: Prediction of treatment outcomes is a key step in improving the treatment of major depressive disorder (MDD). The Canadian Biomarker Integration Network in Depression (CAN-BIND) aims to predict antidepressant treatment outcomes through analyses of clinical assessment, neuroimaging, and blood biomarkers. METHODS: In the CAN-BIND-1 dataset of 192 adults with MDD and outcomes of treatment with escitalopram, we applied machine learning models in a nested cross-validation framework. Across 210 analyses, we examined combinations of predictive variables from three modalities, measured at baseline and after 2 weeks of treatment, and five machine learning methods with and without feature selection. To optimize the predictors-to-observations ratio, we followed a tiered approach with 134 and 1152 variables in tier 1 and tier 2 respectively. RESULTS: A combination of baseline tier 1 clinical, neuroimaging, and molecular variables predicted response with a mean balanced accuracy of 0.57 (best model mean 0.62) compared to 0.54 (best model mean 0.61) in single modality models. Adding week 2 predictors improved the prediction of response to a mean balanced accuracy of 0.59 (best model mean 0.66). Adding tier 2 features did not improve prediction. CONCLUSIONS: A combination of clinical, neuroimaging, and molecular data improves the prediction of treatment outcomes over single modality measurement. The addition of measurements from the early stages of treatment adds precision. Present results are limited by lack of external validation. To achieve clinically meaningful prediction, the multimodal measurement should be scaled up to larger samples and the robustness of prediction tested in an external validation dataset. Cambridge University Press 2023-09 2022-08-25 /pmc/articles/PMC10482706/ /pubmed/36004538 http://dx.doi.org/10.1017/S0033291722002124 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
spellingShingle Original Article
Sajjadian, Mehri
Uher, Rudolf
Ho, Keith
Hassel, Stefanie
Milev, Roumen
Frey, Benicio N.
Farzan, Faranak
Blier, Pierre
Foster, Jane A.
Parikh, Sagar V.
Müller, Daniel J.
Rotzinger, Susan
Soares, Claudio N.
Turecki, Gustavo
Taylor, Valerie H.
Lam, Raymond W.
Strother, Stephen C.
Kennedy, Sidney H.
Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report
title Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report
title_full Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report
title_fullStr Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report
title_full_unstemmed Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report
title_short Prediction of depression treatment outcome from multimodal data: a CAN-BIND-1 report
title_sort prediction of depression treatment outcome from multimodal data: a can-bind-1 report
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482706/
https://www.ncbi.nlm.nih.gov/pubmed/36004538
http://dx.doi.org/10.1017/S0033291722002124
work_keys_str_mv AT sajjadianmehri predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT uherrudolf predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT hokeith predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT hasselstefanie predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT milevroumen predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT freybenicion predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT farzanfaranak predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT blierpierre predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT fosterjanea predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT parikhsagarv predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT mullerdanielj predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT rotzingersusan predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT soaresclaudion predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT tureckigustavo predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT taylorvalerieh predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT lamraymondw predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT strotherstephenc predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report
AT kennedysidneyh predictionofdepressiontreatmentoutcomefrommultimodaldataacanbind1report