Cargando…
A deep learning approach for fully automated measurements of lower extremity alignment in radiographic images
During clinical evaluation of patients and planning orthopedic treatments, the periodic assessment of lower limb alignment is critical. Currently, physicians use physical tools and radiographs to directly observe limb alignment. However, this process is manual, time consuming, and prone to human err...
Autores principales: | Moon, Ki-Ryum, Lee, Byoung-Dai, Lee, Mu Sook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482837/ https://www.ncbi.nlm.nih.gov/pubmed/37673920 http://dx.doi.org/10.1038/s41598-023-41380-2 |
Ejemplares similares
-
Fully automated measurement on coronal alignment of lower limbs using deep convolutional neural networks on radiographic images
por: Meng, Xianghong, et al.
Publicado: (2022) -
Deep Learning for Fully Automated Radiographic Measurements of the Pelvis and Hip
por: Stotter, Christoph, et al.
Publicado: (2023) -
Unsupervised anomaly detection for posteroanterior chest X-rays using multiresolution patch-based self-supervised learning
por: Kim, Minki, et al.
Publicado: (2023) -
Fully Automated Segmentation of Lower Extremity Deep Vein Thrombosis Using Convolutional Neural Network
por: Huang, Chen, et al.
Publicado: (2019) -
Evaluation of the feasibility of explainable computer-aided detection of cardiomegaly on chest radiographs using deep learning
por: Lee, Mu Sook, et al.
Publicado: (2021)