Cargando…
The Deep Generative Decoder: MAP estimation of representations improves modelling of single-cell RNA data
MOTIVATION: Learning low-dimensional representations of single-cell transcriptomics has become instrumental to its downstream analysis. The state of the art is currently represented by neural network models, such as variational autoencoders, which use a variational approximation of the likelihood fo...
Autores principales: | Schuster, Viktoria, Krogh, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483129/ https://www.ncbi.nlm.nih.gov/pubmed/37572301 http://dx.doi.org/10.1093/bioinformatics/btad497 |
Ejemplares similares
-
A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
por: Schuster, Viktoria, et al.
Publicado: (2021) -
N-of-one differential gene expression without control samples using a deep generative model
por: Prada-Luengo, Iñigo, et al.
Publicado: (2023) -
The relationship between frequency content and representational dynamics in the decoding of neurophysiological data
por: Higgins, Cameron, et al.
Publicado: (2022) -
Extracting representations of cognition across neuroimaging studies improves brain decoding
por: Mensch, Arthur, et al.
Publicado: (2021) -
Improving the validity of neuroimaging decoding tests of invariant and configural neural representation
por: Soto, Fabian A., et al.
Publicado: (2023)