Cargando…
Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools
BACKGROUND: We sought to develop a proteomics-based risk model for lung cancer and evaluate its risk-discriminatory performance in comparison with a smoking-based risk model (PLCOm2012) and a commercially available autoantibody biomarker test. METHODS: We designed a case-control study nested in 6 pr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483263/ https://www.ncbi.nlm.nih.gov/pubmed/37260165 http://dx.doi.org/10.1093/jnci/djad071 |
_version_ | 1785102339312451584 |
---|---|
author | Feng, Xiaoshuang Wu, Wendy Yi-Ying Onwuka, Justina Ucheojor Haider, Zahra Alcala, Karine Smith-Byrne, Karl Zahed, Hana Guida, Florence Wang, Renwei Bassett, Julie K Stevens, Victoria Wang, Ying Weinstein, Stephanie Freedman, Neal D Chen, Chu Tinker, Lesley Nøst, Therese Haugdahl Koh, Woon-Puay Muller, David Colorado-Yohar, Sandra M Tumino, Rosario Hung, Rayjean J Amos, Christopher I Lin, Xihong Zhang, Xuehong Arslan, Alan A Sánchez, Maria-Jose Sørgjerd, Elin Pettersen Severi, Gianluca Hveem, Kristian Brennan, Paul Langhammer, Arnulf Milne, Roger L Yuan, Jian-Min Melin, Beatrice Johansson, Mikael Robbins, Hilary A Johansson, Mattias |
author_facet | Feng, Xiaoshuang Wu, Wendy Yi-Ying Onwuka, Justina Ucheojor Haider, Zahra Alcala, Karine Smith-Byrne, Karl Zahed, Hana Guida, Florence Wang, Renwei Bassett, Julie K Stevens, Victoria Wang, Ying Weinstein, Stephanie Freedman, Neal D Chen, Chu Tinker, Lesley Nøst, Therese Haugdahl Koh, Woon-Puay Muller, David Colorado-Yohar, Sandra M Tumino, Rosario Hung, Rayjean J Amos, Christopher I Lin, Xihong Zhang, Xuehong Arslan, Alan A Sánchez, Maria-Jose Sørgjerd, Elin Pettersen Severi, Gianluca Hveem, Kristian Brennan, Paul Langhammer, Arnulf Milne, Roger L Yuan, Jian-Min Melin, Beatrice Johansson, Mikael Robbins, Hilary A Johansson, Mattias |
author_sort | Feng, Xiaoshuang |
collection | PubMed |
description | BACKGROUND: We sought to develop a proteomics-based risk model for lung cancer and evaluate its risk-discriminatory performance in comparison with a smoking-based risk model (PLCOm2012) and a commercially available autoantibody biomarker test. METHODS: We designed a case-control study nested in 6 prospective cohorts, including 624 lung cancer participants who donated blood samples at most 3 years prior to lung cancer diagnosis and 624 smoking-matched cancer free participants who were assayed for 302 proteins. We used 470 case-control pairs from 4 cohorts to select proteins and train a protein-based risk model. We subsequently used 154 case-control pairs from 2 cohorts to compare the risk-discriminatory performance of the protein-based model with that of the Early Cancer Detection Test (EarlyCDT)-Lung and the PLCOm2012 model using receiver operating characteristics analysis and by estimating models’ sensitivity. All tests were 2-sided. RESULTS: The area under the curve for the protein-based risk model in the validation sample was 0.75 (95% confidence interval [CI] = 0.70 to 0.81) compared with 0.64 (95% CI = 0.57 to 0.70) for the PLCOm2012 model (P(difference) = .001). The EarlyCDT-Lung had a sensitivity of 14% (95% CI = 8.2% to 19%) and a specificity of 86% (95% CI = 81% to 92%) for incident lung cancer. At the same specificity of 86%, the sensitivity for the protein-based risk model was estimated at 49% (95% CI = 41% to 57%) and 30% (95% CI = 23% to 37%) for the PLCOm2012 model. CONCLUSION: Circulating proteins showed promise in predicting incident lung cancer and outperformed a standard risk prediction model and the commercialized EarlyCDT-Lung. |
format | Online Article Text |
id | pubmed-10483263 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-104832632023-09-08 Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools Feng, Xiaoshuang Wu, Wendy Yi-Ying Onwuka, Justina Ucheojor Haider, Zahra Alcala, Karine Smith-Byrne, Karl Zahed, Hana Guida, Florence Wang, Renwei Bassett, Julie K Stevens, Victoria Wang, Ying Weinstein, Stephanie Freedman, Neal D Chen, Chu Tinker, Lesley Nøst, Therese Haugdahl Koh, Woon-Puay Muller, David Colorado-Yohar, Sandra M Tumino, Rosario Hung, Rayjean J Amos, Christopher I Lin, Xihong Zhang, Xuehong Arslan, Alan A Sánchez, Maria-Jose Sørgjerd, Elin Pettersen Severi, Gianluca Hveem, Kristian Brennan, Paul Langhammer, Arnulf Milne, Roger L Yuan, Jian-Min Melin, Beatrice Johansson, Mikael Robbins, Hilary A Johansson, Mattias J Natl Cancer Inst Article BACKGROUND: We sought to develop a proteomics-based risk model for lung cancer and evaluate its risk-discriminatory performance in comparison with a smoking-based risk model (PLCOm2012) and a commercially available autoantibody biomarker test. METHODS: We designed a case-control study nested in 6 prospective cohorts, including 624 lung cancer participants who donated blood samples at most 3 years prior to lung cancer diagnosis and 624 smoking-matched cancer free participants who were assayed for 302 proteins. We used 470 case-control pairs from 4 cohorts to select proteins and train a protein-based risk model. We subsequently used 154 case-control pairs from 2 cohorts to compare the risk-discriminatory performance of the protein-based model with that of the Early Cancer Detection Test (EarlyCDT)-Lung and the PLCOm2012 model using receiver operating characteristics analysis and by estimating models’ sensitivity. All tests were 2-sided. RESULTS: The area under the curve for the protein-based risk model in the validation sample was 0.75 (95% confidence interval [CI] = 0.70 to 0.81) compared with 0.64 (95% CI = 0.57 to 0.70) for the PLCOm2012 model (P(difference) = .001). The EarlyCDT-Lung had a sensitivity of 14% (95% CI = 8.2% to 19%) and a specificity of 86% (95% CI = 81% to 92%) for incident lung cancer. At the same specificity of 86%, the sensitivity for the protein-based risk model was estimated at 49% (95% CI = 41% to 57%) and 30% (95% CI = 23% to 37%) for the PLCOm2012 model. CONCLUSION: Circulating proteins showed promise in predicting incident lung cancer and outperformed a standard risk prediction model and the commercialized EarlyCDT-Lung. Oxford University Press 2023-06-01 /pmc/articles/PMC10483263/ /pubmed/37260165 http://dx.doi.org/10.1093/jnci/djad071 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Article Feng, Xiaoshuang Wu, Wendy Yi-Ying Onwuka, Justina Ucheojor Haider, Zahra Alcala, Karine Smith-Byrne, Karl Zahed, Hana Guida, Florence Wang, Renwei Bassett, Julie K Stevens, Victoria Wang, Ying Weinstein, Stephanie Freedman, Neal D Chen, Chu Tinker, Lesley Nøst, Therese Haugdahl Koh, Woon-Puay Muller, David Colorado-Yohar, Sandra M Tumino, Rosario Hung, Rayjean J Amos, Christopher I Lin, Xihong Zhang, Xuehong Arslan, Alan A Sánchez, Maria-Jose Sørgjerd, Elin Pettersen Severi, Gianluca Hveem, Kristian Brennan, Paul Langhammer, Arnulf Milne, Roger L Yuan, Jian-Min Melin, Beatrice Johansson, Mikael Robbins, Hilary A Johansson, Mattias Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools |
title | Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools |
title_full | Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools |
title_fullStr | Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools |
title_full_unstemmed | Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools |
title_short | Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools |
title_sort | lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483263/ https://www.ncbi.nlm.nih.gov/pubmed/37260165 http://dx.doi.org/10.1093/jnci/djad071 |
work_keys_str_mv | AT fengxiaoshuang lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT wuwendyyiying lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT onwukajustinaucheojor lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT haiderzahra lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT alcalakarine lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT smithbyrnekarl lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT zahedhana lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT guidaflorence lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT wangrenwei lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT bassettjuliek lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT stevensvictoria lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT wangying lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT weinsteinstephanie lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT freedmanneald lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT chenchu lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT tinkerlesley lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT nøsttheresehaugdahl lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT kohwoonpuay lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT mullerdavid lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT coloradoyoharsandram lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT tuminorosario lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT hungrayjeanj lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT amoschristopheri lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT linxihong lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT zhangxuehong lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT arslanalana lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT sanchezmariajose lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT sørgjerdelinpettersen lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT severigianluca lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT hveemkristian lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT brennanpaul lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT langhammerarnulf lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT milnerogerl lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT yuanjianmin lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT melinbeatrice lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT johanssonmikael lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT robbinshilarya lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools AT johanssonmattias lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools |