Cargando…

Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools

BACKGROUND: We sought to develop a proteomics-based risk model for lung cancer and evaluate its risk-discriminatory performance in comparison with a smoking-based risk model (PLCOm2012) and a commercially available autoantibody biomarker test. METHODS: We designed a case-control study nested in 6 pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Xiaoshuang, Wu, Wendy Yi-Ying, Onwuka, Justina Ucheojor, Haider, Zahra, Alcala, Karine, Smith-Byrne, Karl, Zahed, Hana, Guida, Florence, Wang, Renwei, Bassett, Julie K, Stevens, Victoria, Wang, Ying, Weinstein, Stephanie, Freedman, Neal D, Chen, Chu, Tinker, Lesley, Nøst, Therese Haugdahl, Koh, Woon-Puay, Muller, David, Colorado-Yohar, Sandra M, Tumino, Rosario, Hung, Rayjean J, Amos, Christopher I, Lin, Xihong, Zhang, Xuehong, Arslan, Alan A, Sánchez, Maria-Jose, Sørgjerd, Elin Pettersen, Severi, Gianluca, Hveem, Kristian, Brennan, Paul, Langhammer, Arnulf, Milne, Roger L, Yuan, Jian-Min, Melin, Beatrice, Johansson, Mikael, Robbins, Hilary A, Johansson, Mattias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483263/
https://www.ncbi.nlm.nih.gov/pubmed/37260165
http://dx.doi.org/10.1093/jnci/djad071
_version_ 1785102339312451584
author Feng, Xiaoshuang
Wu, Wendy Yi-Ying
Onwuka, Justina Ucheojor
Haider, Zahra
Alcala, Karine
Smith-Byrne, Karl
Zahed, Hana
Guida, Florence
Wang, Renwei
Bassett, Julie K
Stevens, Victoria
Wang, Ying
Weinstein, Stephanie
Freedman, Neal D
Chen, Chu
Tinker, Lesley
Nøst, Therese Haugdahl
Koh, Woon-Puay
Muller, David
Colorado-Yohar, Sandra M
Tumino, Rosario
Hung, Rayjean J
Amos, Christopher I
Lin, Xihong
Zhang, Xuehong
Arslan, Alan A
Sánchez, Maria-Jose
Sørgjerd, Elin Pettersen
Severi, Gianluca
Hveem, Kristian
Brennan, Paul
Langhammer, Arnulf
Milne, Roger L
Yuan, Jian-Min
Melin, Beatrice
Johansson, Mikael
Robbins, Hilary A
Johansson, Mattias
author_facet Feng, Xiaoshuang
Wu, Wendy Yi-Ying
Onwuka, Justina Ucheojor
Haider, Zahra
Alcala, Karine
Smith-Byrne, Karl
Zahed, Hana
Guida, Florence
Wang, Renwei
Bassett, Julie K
Stevens, Victoria
Wang, Ying
Weinstein, Stephanie
Freedman, Neal D
Chen, Chu
Tinker, Lesley
Nøst, Therese Haugdahl
Koh, Woon-Puay
Muller, David
Colorado-Yohar, Sandra M
Tumino, Rosario
Hung, Rayjean J
Amos, Christopher I
Lin, Xihong
Zhang, Xuehong
Arslan, Alan A
Sánchez, Maria-Jose
Sørgjerd, Elin Pettersen
Severi, Gianluca
Hveem, Kristian
Brennan, Paul
Langhammer, Arnulf
Milne, Roger L
Yuan, Jian-Min
Melin, Beatrice
Johansson, Mikael
Robbins, Hilary A
Johansson, Mattias
author_sort Feng, Xiaoshuang
collection PubMed
description BACKGROUND: We sought to develop a proteomics-based risk model for lung cancer and evaluate its risk-discriminatory performance in comparison with a smoking-based risk model (PLCOm2012) and a commercially available autoantibody biomarker test. METHODS: We designed a case-control study nested in 6 prospective cohorts, including 624 lung cancer participants who donated blood samples at most 3 years prior to lung cancer diagnosis and 624 smoking-matched cancer free participants who were assayed for 302 proteins. We used 470 case-control pairs from 4 cohorts to select proteins and train a protein-based risk model. We subsequently used 154 case-control pairs from 2 cohorts to compare the risk-discriminatory performance of the protein-based model with that of the Early Cancer Detection Test (EarlyCDT)-Lung and the PLCOm2012 model using receiver operating characteristics analysis and by estimating models’ sensitivity. All tests were 2-sided. RESULTS: The area under the curve for the protein-based risk model in the validation sample was 0.75 (95% confidence interval [CI] = 0.70 to 0.81) compared with 0.64 (95% CI = 0.57 to 0.70) for the PLCOm2012 model (P(difference) = .001). The EarlyCDT-Lung had a sensitivity of 14% (95% CI = 8.2% to 19%) and a specificity of 86% (95% CI = 81% to 92%) for incident lung cancer. At the same specificity of 86%, the sensitivity for the protein-based risk model was estimated at 49% (95% CI = 41% to 57%) and 30% (95% CI = 23% to 37%) for the PLCOm2012 model. CONCLUSION: Circulating proteins showed promise in predicting incident lung cancer and outperformed a standard risk prediction model and the commercialized EarlyCDT-Lung.
format Online
Article
Text
id pubmed-10483263
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-104832632023-09-08 Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools Feng, Xiaoshuang Wu, Wendy Yi-Ying Onwuka, Justina Ucheojor Haider, Zahra Alcala, Karine Smith-Byrne, Karl Zahed, Hana Guida, Florence Wang, Renwei Bassett, Julie K Stevens, Victoria Wang, Ying Weinstein, Stephanie Freedman, Neal D Chen, Chu Tinker, Lesley Nøst, Therese Haugdahl Koh, Woon-Puay Muller, David Colorado-Yohar, Sandra M Tumino, Rosario Hung, Rayjean J Amos, Christopher I Lin, Xihong Zhang, Xuehong Arslan, Alan A Sánchez, Maria-Jose Sørgjerd, Elin Pettersen Severi, Gianluca Hveem, Kristian Brennan, Paul Langhammer, Arnulf Milne, Roger L Yuan, Jian-Min Melin, Beatrice Johansson, Mikael Robbins, Hilary A Johansson, Mattias J Natl Cancer Inst Article BACKGROUND: We sought to develop a proteomics-based risk model for lung cancer and evaluate its risk-discriminatory performance in comparison with a smoking-based risk model (PLCOm2012) and a commercially available autoantibody biomarker test. METHODS: We designed a case-control study nested in 6 prospective cohorts, including 624 lung cancer participants who donated blood samples at most 3 years prior to lung cancer diagnosis and 624 smoking-matched cancer free participants who were assayed for 302 proteins. We used 470 case-control pairs from 4 cohorts to select proteins and train a protein-based risk model. We subsequently used 154 case-control pairs from 2 cohorts to compare the risk-discriminatory performance of the protein-based model with that of the Early Cancer Detection Test (EarlyCDT)-Lung and the PLCOm2012 model using receiver operating characteristics analysis and by estimating models’ sensitivity. All tests were 2-sided. RESULTS: The area under the curve for the protein-based risk model in the validation sample was 0.75 (95% confidence interval [CI] = 0.70 to 0.81) compared with 0.64 (95% CI = 0.57 to 0.70) for the PLCOm2012 model (P(difference) = .001). The EarlyCDT-Lung had a sensitivity of 14% (95% CI = 8.2% to 19%) and a specificity of 86% (95% CI = 81% to 92%) for incident lung cancer. At the same specificity of 86%, the sensitivity for the protein-based risk model was estimated at 49% (95% CI = 41% to 57%) and 30% (95% CI = 23% to 37%) for the PLCOm2012 model. CONCLUSION: Circulating proteins showed promise in predicting incident lung cancer and outperformed a standard risk prediction model and the commercialized EarlyCDT-Lung. Oxford University Press 2023-06-01 /pmc/articles/PMC10483263/ /pubmed/37260165 http://dx.doi.org/10.1093/jnci/djad071 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Article
Feng, Xiaoshuang
Wu, Wendy Yi-Ying
Onwuka, Justina Ucheojor
Haider, Zahra
Alcala, Karine
Smith-Byrne, Karl
Zahed, Hana
Guida, Florence
Wang, Renwei
Bassett, Julie K
Stevens, Victoria
Wang, Ying
Weinstein, Stephanie
Freedman, Neal D
Chen, Chu
Tinker, Lesley
Nøst, Therese Haugdahl
Koh, Woon-Puay
Muller, David
Colorado-Yohar, Sandra M
Tumino, Rosario
Hung, Rayjean J
Amos, Christopher I
Lin, Xihong
Zhang, Xuehong
Arslan, Alan A
Sánchez, Maria-Jose
Sørgjerd, Elin Pettersen
Severi, Gianluca
Hveem, Kristian
Brennan, Paul
Langhammer, Arnulf
Milne, Roger L
Yuan, Jian-Min
Melin, Beatrice
Johansson, Mikael
Robbins, Hilary A
Johansson, Mattias
Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools
title Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools
title_full Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools
title_fullStr Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools
title_full_unstemmed Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools
title_short Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools
title_sort lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483263/
https://www.ncbi.nlm.nih.gov/pubmed/37260165
http://dx.doi.org/10.1093/jnci/djad071
work_keys_str_mv AT fengxiaoshuang lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT wuwendyyiying lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT onwukajustinaucheojor lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT haiderzahra lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT alcalakarine lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT smithbyrnekarl lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT zahedhana lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT guidaflorence lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT wangrenwei lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT bassettjuliek lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT stevensvictoria lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT wangying lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT weinsteinstephanie lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT freedmanneald lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT chenchu lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT tinkerlesley lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT nøsttheresehaugdahl lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT kohwoonpuay lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT mullerdavid lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT coloradoyoharsandram lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT tuminorosario lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT hungrayjeanj lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT amoschristopheri lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT linxihong lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT zhangxuehong lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT arslanalana lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT sanchezmariajose lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT sørgjerdelinpettersen lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT severigianluca lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT hveemkristian lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT brennanpaul lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT langhammerarnulf lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT milnerogerl lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT yuanjianmin lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT melinbeatrice lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT johanssonmikael lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT robbinshilarya lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools
AT johanssonmattias lungcancerriskdiscriminationofprediagnosticproteomicsmeasurementscomparedwithexistingpredictiontools