Cargando…
Deep extreme learning machine with knowledge augmentation for EEG seizure signal recognition
INTRODUCTION: Intelligent recognition of electroencephalogram (EEG) signals can remarkably improve the accuracy of epileptic seizure prediction, which is essential for epileptic diagnosis. Extreme learning machine (ELM) has been applied to EEG signals recognition, however, the artifacts and noises i...
Autores principales: | Zhang, Xiongtao, Dong, Shuai, Shen, Qing, Zhou, Jie, Min, Jingjing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483404/ https://www.ncbi.nlm.nih.gov/pubmed/37692360 http://dx.doi.org/10.3389/fninf.2023.1205529 |
Ejemplares similares
-
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023) -
An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
por: Zhang, Yaqing, et al.
Publicado: (2020) -
Deep learning-based self-induced emotion recognition using EEG
por: Ji, Yerim, et al.
Publicado: (2022) -
Supervised Machine Learning and Deep Learning Techniques for Epileptic Seizure Recognition Using EEG Signals—A Systematic Literature Review
por: Nafea, Mohamed Sami, et al.
Publicado: (2022) -
Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG
por: Cao, Xincheng, et al.
Publicado: (2021)