Cargando…
Molecular Surface Quantification of Multifunctionalized Gold Nanoparticles Using UV–Visible Absorption Spectroscopy Deconvolution
[Image: see text] Multifunctional gold nanoparticles (AuNPs) are of great interest, owing to their vast potential for use in many areas including sensing, imaging, delivery, and medicine. A key factor in determining the biological activity of multifunctional AuNPs is the quantification of surface co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483462/ https://www.ncbi.nlm.nih.gov/pubmed/37621249 http://dx.doi.org/10.1021/acs.analchem.3c01649 |
Sumario: | [Image: see text] Multifunctional gold nanoparticles (AuNPs) are of great interest, owing to their vast potential for use in many areas including sensing, imaging, delivery, and medicine. A key factor in determining the biological activity of multifunctional AuNPs is the quantification of surface conjugated molecules. There has been a lack of accurate methods to determine this for multifunctionalized AuNPs. We address this limitation by using a new method based on the deconvolution and Levenberg–Marquardt algorithm fitting of UV–visible absorption spectrum to calculate the precise concentration and number of cytochrome C (Cyt C) and zinc porphyrin (Zn Porph) bound to each multifunctional AuNP. Dynamic light scattering (DLS) and zeta potential measurements were used to confirm the functionalization of AuNPs with Cyt C and Zn Porph. Transmission electron microscopy (TEM) was used in conjunction with UV–visible absorption spectroscopy and DLS to identify the AuNP size and confirm that no aggregation had taken place after functionalization. Despite the overlapping absorption bands of Cyt C and Zn Porph, this method was able to reveal a precise concentration and number of Cyt C and Zn Porph molecules attached per AuNP. Furthermore, using this method, we were able to identify unconjugated molecules, suggesting the need for further purification of the sample. This guide provides a simple and effective method to quickly quantify molecules bound to AuNPs, giving users valuable information, especially for applications in drug delivery and biosensors. |
---|