Cargando…
Effect of organic acid-soaking and sonication on the formation of volatile compounds and α-dicarbonyl compounds in Robusta coffee
In this study, the effects of organic acid-soaking (malic, citric, tartaric, and succinic acid) and sonication on the formation of flavor and α-dicarbonyl compounds in Robusta (C. canephora syn. Coffea robusta) green beans were investigated. A total of 20 volatile compounds were identified in Robust...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483508/ https://www.ncbi.nlm.nih.gov/pubmed/37673014 http://dx.doi.org/10.1016/j.ultsonch.2023.106580 |
Sumario: | In this study, the effects of organic acid-soaking (malic, citric, tartaric, and succinic acid) and sonication on the formation of flavor and α-dicarbonyl compounds in Robusta (C. canephora syn. Coffea robusta) green beans were investigated. A total of 20 volatile compounds were identified in Robusta coffee. Furfural and 5-methyl furfural, two dominant volatile compounds in Arabica coffee, increased after organic acid pretreatment. In Robusta coffee processed from 3% malic acid-soaked coffee beans, furfural and 5-methyl furfural increased by 90.99% and 24.92%, respectively, compared to the control. In Robusta coffee processed from 3% malic acid-sonicated (280 W, 1 h) coffee beans, furfural and 5-methyl furfural increased by 236.03% and 114.77%, respectively. α-Dicarbonyls (glyoxal, methylglyoxal, and diacetyl) were significantly (p < 0.05) decreased in all Robusta coffees after organic acid pretreatment. In Robusta coffee processed from coffee beans soaked and sonicated in tartaric acid solution, the α-dicarbonyls decreased by up to 44% and 58%, respectively, compared to the control. This study suggested the pretreatment methods to enhance the flavor substances and reduce the α-DCs in Robusta coffee. |
---|