Cargando…
A framework for multi-faceted content analysis of social media chatter regarding non-medical use of prescription medications
BACKGROUND: Substance use, including the non-medical use of prescription medications, is a global health problem resulting in hundreds of thousands of overdose deaths and other health problems. Social media has emerged as a potent source of information for studying substance use-related behaviours a...
Autores principales: | Raza, Shaina, Schwartz, Brian, Lakamana, Sahithi, Ge, Yao, Sarker, Abeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483682/ https://www.ncbi.nlm.nih.gov/pubmed/37680768 http://dx.doi.org/10.1186/s44247-023-00029-w |
Ejemplares similares
-
The Early Detection of Fraudulent COVID-19 Products From Twitter Chatter: Data Set and Baseline Approach Using Anomaly Detection
por: Sarker, Abeed, et al.
Publicado: (2023) -
Machine Learning and Natural Language Processing for Geolocation-Centric Monitoring and Characterization of Opioid-Related Social Media Chatter
por: Sarker, Abeed, et al.
Publicado: (2019) -
Mining social media for prescription medication abuse monitoring: a review and proposal for a data-centric framework
por: Sarker, Abeed, et al.
Publicado: (2019) -
An aspect-level sentiment analysis dataset for therapies on Twitter
por: Guo, Yuting, et al.
Publicado: (2023) -
A corpus for mining drug-related knowledge from Twitter chatter: Language models and their utilities
por: Sarker, Abeed, et al.
Publicado: (2016)