Cargando…
m1A Regulatory gene signatures are associated with certain immune cell compositions of the tumor microenvironment and predict survival in kidney renal clear cell carcinoma
Adenosine N1 methylation (m1A) of RNA, a type of post-transcriptional modification, has been shown to play a significant role in the progression of cancer. The objective of the current research was to analyze the genetic alteration and prognostic significance of m1A regulators in kidney renal clear...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483733/ https://www.ncbi.nlm.nih.gov/pubmed/37679761 http://dx.doi.org/10.1186/s40001-023-01292-3 |
Sumario: | Adenosine N1 methylation (m1A) of RNA, a type of post-transcriptional modification, has been shown to play a significant role in the progression of cancer. The objective of the current research was to analyze the genetic alteration and prognostic significance of m1A regulators in kidney renal clear cell carcinoma (KIRC). Genomic and clinicopathological characteristics were obtained from 558 KIRC patients in the Cancer Genome Atlas (TCGA) and Gene Omnibus Expression (GEO) databases. Alterations in the gene expression of ten m1A-regulators were analyzed and survival analysis was performed using the Cox regression method. We also identified three clusters of patients based on their distinct m1A alteration patterns, using integrated analysis of the ten m1A-related regulators, which were significantly related to overall survival (OS), disease-free survival (DFS) and tumor microenvironment (TME) immune cell infiltration cells in KIRC. Our findings showed that m1A alteration patterns have critical roles in determining TME complexity and its immune cell composition. Furthermore, different m1A expression patterns were significantly associated with DFS and OS rates in KIRC patients. In conclusion, the identified m1A RNA modification patterns offer a potentially effective way to classify KIRC patients based on their TME immune cell infiltration, enabling the development of more personalized and successful treatment strategies for these patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40001-023-01292-3. |
---|