Cargando…
Machine learning-identified stemness features and constructed stemness-related subtype with prognosis, chemotherapy, and immunotherapy responses for non-small cell lung cancer patients
AIM: This study aimed to explore a novel subtype classification method based on the stemness characteristics of patients with non-small cell lung cancer (NSCLC). METHODS: Based on the Cancer Genome Atlas database to calculate the stemness index (mRNAsi) of NSCLC patients, an unsupervised consensus c...
Autores principales: | Liu, Mingshan, Zhou, Ruihao, Zou, Wei, Yang, Zhuofan, Li, Quanjin, Chen, Zhiguo, jiang, Lei, Zhang, Jingtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483786/ https://www.ncbi.nlm.nih.gov/pubmed/37674202 http://dx.doi.org/10.1186/s13287-023-03406-4 |
Ejemplares similares
-
Stemness Subtypes and Scoring System Predict Prognosis and Efficacy of Immunotherapy in Soft Tissue Sarcoma
por: Gu, Hui-Yun, et al.
Publicado: (2022) -
The Integrative Analysis Identifies Three Cancer Subtypes and Stemness Features in Cutaneous Melanoma
por: Wang, Xiaoran, et al.
Publicado: (2021) -
Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients
por: Wang, Zihao, et al.
Publicado: (2021) -
Characterization of stemness features and construction of a stemness subtype classifier to predict survival and treatment responses in lung squamous cell carcinoma
por: Lai, Jinzhi, et al.
Publicado: (2023) -
Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients
por: Chen, Dongjie, et al.
Publicado: (2022)