Cargando…
Correcting batch effects in large-scale multiomics studies using a reference-material-based ratio method
BACKGROUND: Batch effects are notoriously common technical variations in multiomics data and may result in misleading outcomes if uncorrected or over-corrected. A plethora of batch-effect correction algorithms are proposed to facilitate data integration. However, their respective advantages and limi...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483871/ https://www.ncbi.nlm.nih.gov/pubmed/37674217 http://dx.doi.org/10.1186/s13059-023-03047-z |
Sumario: | BACKGROUND: Batch effects are notoriously common technical variations in multiomics data and may result in misleading outcomes if uncorrected or over-corrected. A plethora of batch-effect correction algorithms are proposed to facilitate data integration. However, their respective advantages and limitations are not adequately assessed in terms of omics types, the performance metrics, and the application scenarios. RESULTS: As part of the Quartet Project for quality control and data integration of multiomics profiling, we comprehensively assess the performance of seven batch effect correction algorithms based on different performance metrics of clinical relevance, i.e., the accuracy of identifying differentially expressed features, the robustness of predictive models, and the ability of accurately clustering cross-batch samples into their own donors. The ratio-based method, i.e., by scaling absolute feature values of study samples relative to those of concurrently profiled reference material(s), is found to be much more effective and broadly applicable than others, especially when batch effects are completely confounded with biological factors of study interests. We further provide practical guidelines for implementing the ratio based approach in increasingly large-scale multiomics studies. CONCLUSIONS: Multiomics measurements are prone to batch effects, which can be effectively corrected using ratio-based scaling of the multiomics data. Our study lays the foundation for eliminating batch effects at a ratio scale. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03047-z. |
---|