Cargando…

Pre-training working memory/information processing capabilities and brain atrophy limit the improving effects of cognitive training

BACKGROUND: Computerized training in persons with multiple sclerosis (PwMS) seems to enhance working memory (WM)/information processing (IP), but factors associated with the efficacy of the treatment have not been sufficiently explored. Objective: To identify clinical and radiological characteristic...

Descripción completa

Detalles Bibliográficos
Autores principales: Esbrí, Sónia Félix, Sebastián Tirado, Alba, Zaragoza Mezquita, Maria, Sanchis Segura, Carla, Forn, Cristina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483983/
https://www.ncbi.nlm.nih.gov/pubmed/37692294
http://dx.doi.org/10.1177/20552173231196990
Descripción
Sumario:BACKGROUND: Computerized training in persons with multiple sclerosis (PwMS) seems to enhance working memory (WM)/information processing (IP), but factors associated with the efficacy of the treatment have not been sufficiently explored. Objective: To identify clinical and radiological characteristics associated with positive WM/IP training responses. METHODS: Radiological and neuropsychological assessments were carried out on a sample of 35 PwMs who were divided into “WM/IP-impaired” and “WM/IP-preserved.” All participants underwent adaptive n-back training for 10 days and were assessed post-training. Between-group differences (“WM/IP-impaired” vs. “WM/IP-preserved”) in training-induced cognitive improvement were assessed and exploratory correlational/ regression-based methods were employed to assess the relationship between cognitive improvement and clinical and radiological variables. RESULTS: All PwMS exhibited WM/IP benefits after training, but those with preserved WM/IP functions showed greater positive effects as well as transfer effects to other WM/IP tests when compared to the impaired group. Additional analyses revealed that positive response to treatment was associated with WM/IP baseline capabilities and greater gray matter volume (GMVOL) in relevant areas such as the thalamus. CONCLUSIONS: Restorative cognitive training is suitable to improve cognition in PwMS but its effective outcome differs depending on the baseline WM/IP capabilities and GMVOL.