Cargando…
A risk identification model for detection of patients at risk of antidepressant discontinuation
PURPOSE: Between 30 and 68% of patients prematurely discontinue their antidepressant treatment, posing significant risks to patient safety and healthcare outcomes. Online healthcare forums have the potential to offer a rich and unique source of data, revealing dimensions of antidepressant discontinu...
Autores principales: | Zolnour, Ali, Eldredge, Christina E., Faiola, Anthony, Yaghoobzadeh, Yadollah, Khani, Masoud, Foy, Doreen, Topaz, Maxim, Kharrazi, Hadi, Fung, Kin Wah, Fontelo, Paul, Davoudi, Anahita, Tabaie, Azade, Breitinger, Scott A., Oesterle, Tyler S., Rouhizadeh, Masoud, Zonnor, Zahra, Moen, Hans, Patrick, Timothy B., Zolnoori, Maryam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484003/ https://www.ncbi.nlm.nih.gov/pubmed/37693012 http://dx.doi.org/10.3389/frai.2023.1229609 |
Ejemplares similares
-
Identifying the Underlying Factors Associated With Patients’ Attitudes Toward Antidepressants: Qualitative and Quantitative Analysis of Patient Drug Reviews
por: Zolnoori, Maryam, et al.
Publicado: (2018) -
The PsyTAR dataset: From patients generated narratives to a corpus of adverse drug events and effectiveness of psychiatric medications
por: Zolnoori, Maryam, et al.
Publicado: (2019) -
Assessing the Availability of Data on Social and Behavioral Determinants in Structured and Unstructured Electronic Health Records: A Retrospective Analysis of a Multilevel Health Care System
por: Hatef, Elham, et al.
Publicado: (2019) -
Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning
por: Jamshidi, Elham, et al.
Publicado: (2021) -
Size Matters: Digital Social Networks and Language Change
por: Laitinen, Mikko, et al.
Publicado: (2020)