Cargando…
To stay in shape and keep moving: MLL emerges as a new transcriptional regulator of Rho GTPases
RhoA, Rac1 and CDC42 are small G proteins that play a crucial role in regulating various cellular processes, such as the formation of actin cytoskeleton, cell shape and cell migration. Our recent results suggest that MLL is responsible for maintaining the balance of these small Rho GTPases. MLL depl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484036/ https://www.ncbi.nlm.nih.gov/pubmed/37671980 http://dx.doi.org/10.1080/21541248.2023.2254437 |
Sumario: | RhoA, Rac1 and CDC42 are small G proteins that play a crucial role in regulating various cellular processes, such as the formation of actin cytoskeleton, cell shape and cell migration. Our recent results suggest that MLL is responsible for maintaining the balance of these small Rho GTPases. MLL depletion affects the stability of Rho GTPases, leading to a decrease in their protein levels and loss of activity. These changes manifest in the form of abnormal cell shape and disrupted actin cytoskeleton, resulting in reduced cell spreading and migration. Interestingly, their chaperone protein RhoGDI1 but not the Rho GTPases, is under the direct transcriptional regulation of MLL. Here, we comment on the possible implications of these observations on the signalling by Rho GTPases protein network. |
---|