Cargando…

Customizable Open-Source Rotating Rod (Rotarod) Enables Robust Low-Cost Assessment of Motor Performance in Mice

Reliable measurements of motor learning and coordination in mice are fundamental aspects of neuroscience research. Despite the advent of deep-learning approaches for motor assessment, performance testing on a rotating rod (rotarod) has remained a staple in the neuroscientist’s toolbox. Surprisingly,...

Descripción completa

Detalles Bibliográficos
Autores principales: Widjaja, Josephine H., Sloan, Douglas C., Hauger, Joseph A., Muntean, Brian S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484359/
https://www.ncbi.nlm.nih.gov/pubmed/37673671
http://dx.doi.org/10.1523/ENEURO.0123-23.2023
Descripción
Sumario:Reliable measurements of motor learning and coordination in mice are fundamental aspects of neuroscience research. Despite the advent of deep-learning approaches for motor assessment, performance testing on a rotating rod (rotarod) has remained a staple in the neuroscientist’s toolbox. Surprisingly, commercially available rotarod instruments offer limited experimental flexibility at a relatively high cost. In order to address these concerns, we engineered a highly-customizable, low-budget rotarod device with increased functionality. Here, we present a detailed guide to assemble this rotarod using simple materials. Our apparatus incorporates a variation of interchangeable rod sizes and designs which provides for adjustable testing sensitivity. Moreover, our rotarod is driven by open-source software enabling bespoke acceleration ramps and sequences. Finally, we report the strengths and weaknesses of each rod design following multiday testing on cohorts of C57BL/6 mice. We expect explorations in deviant rod types to provide a foundation for the development of increasingly sensitive models for motor performance testing along with low-budget alternatives for the research community.