Cargando…

Evaluation of “Caserotek” a low cost and effective artificial blood-feeding device for mosquitoes

Entomological research studies on mosquito vector biology, vector competence, insecticide resistance, dispersal, and survival (using mark-release-recapture techniques) often rely on laboratory-reared mosquito colonies to produce large numbers of consistently reared, aged, and sized mosquitoes. We de...

Descripción completa

Detalles Bibliográficos
Autores principales: Astete, Helvio, Briesemeister, Verónica, Campos, Cesar, Puertas, Angel, Scott, Thomas W., López-Sifuentes, Víctor, Larson, Ryan, Fisher, Michael, Vásquez, Gissella M., Escobedo-Vargas, Karin, Morrison, Amy C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484425/
https://www.ncbi.nlm.nih.gov/pubmed/37624854
http://dx.doi.org/10.1371/journal.pntd.0011563
Descripción
Sumario:Entomological research studies on mosquito vector biology, vector competence, insecticide resistance, dispersal, and survival (using mark-release-recapture techniques) often rely on laboratory-reared mosquito colonies to produce large numbers of consistently reared, aged, and sized mosquitoes. We developed a low-cost blood feeding apparatus that supports temperatures consistent with warm blooded animals, using commonly available materials found in low resource environments. We compare our system (“Caserotek”) to Hemotek and glass/membrane feeding methods. Two experiments were conducted with Aedes aegypti (Linnaeus 1762) and one with Anopheles darlingi (Root 1926) (Diptera: Culicidae); 3 replicates were conducted for each experiment. Aedes aegypti female mosquitoes were provided chicken blood once per week for 30 min (Experiment #1) for 14 days or 1 hour (Experiment #2) for 21 days. Anopheles darlingi were fed once for 1 hour (Experiment #3). Blood-feeding rates, survival rates, and egg production were calculated across replicates. Caserotek had a significantly higher 30-min engorgement rate (91.1%) than Hemotek (47.7%), and the glass feeder (29.3%) whereas for 1-hour feeding, Hemotek had a significantly lower engorgement rate than either of the other two devices (78% versus 91%). Thirty-day survival was similar among the feeding devices, ranging from 86% to 99%. Mean egg production was highest for the Caserotek feeder (32 eggs per female) compared to the glass feeder and Hemotek device (21–22 eggs per female). Our new artificial feeding system had significantly higher blood feeding rates than for more expensive artificial systems and was equivalent to other fitness parameters. Caserotek only requires the ability to boil water to maintain blood temperatures using a Styrofoam liner. It can be easily scaled up to large production facilities and used under austere conditions.