Cargando…
Analysis of pain research literature through keyword Co-occurrence networks
Pain is a significant public health problem as the number of individuals with a history of pain globally keeps growing. In response, many synergistic research areas have been coming together to address pain-related issues. This work reviews and analyzes a vast body of pain-related literature using t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484461/ https://www.ncbi.nlm.nih.gov/pubmed/37676880 http://dx.doi.org/10.1371/journal.pdig.0000331 |
_version_ | 1785102585788628992 |
---|---|
author | Ozek, Burcu Lu, Zhenyuan Pouromran, Fatemeh Radhakrishnan, Srinivasan Kamarthi, Sagar |
author_facet | Ozek, Burcu Lu, Zhenyuan Pouromran, Fatemeh Radhakrishnan, Srinivasan Kamarthi, Sagar |
author_sort | Ozek, Burcu |
collection | PubMed |
description | Pain is a significant public health problem as the number of individuals with a history of pain globally keeps growing. In response, many synergistic research areas have been coming together to address pain-related issues. This work reviews and analyzes a vast body of pain-related literature using the keyword co-occurrence network (KCN) methodology. In this method, a set of KCNs is constructed by treating keywords as nodes and the co-occurrence of keywords as links between the nodes. Since keywords represent the knowledge components of research articles, analysis of KCNs will reveal the knowledge structure and research trends in the literature. This study extracted and analyzed keywords from 264,560 pain-related research articles indexed in IEEE, PubMed, Engineering Village, and Web of Science published between 2002 and 2021. We observed rapid growth in pain literature in the last two decades: the number of articles has grown nearly threefold, and the number of keywords has grown by a factor of 7. We identified emerging and declining research trends in sensors/methods, biomedical, and treatment tracks. We also extracted the most frequently co-occurring keyword pairs and clusters to help researchers recognize the synergies among different pain-related topics. |
format | Online Article Text |
id | pubmed-10484461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-104844612023-09-08 Analysis of pain research literature through keyword Co-occurrence networks Ozek, Burcu Lu, Zhenyuan Pouromran, Fatemeh Radhakrishnan, Srinivasan Kamarthi, Sagar PLOS Digit Health Research Article Pain is a significant public health problem as the number of individuals with a history of pain globally keeps growing. In response, many synergistic research areas have been coming together to address pain-related issues. This work reviews and analyzes a vast body of pain-related literature using the keyword co-occurrence network (KCN) methodology. In this method, a set of KCNs is constructed by treating keywords as nodes and the co-occurrence of keywords as links between the nodes. Since keywords represent the knowledge components of research articles, analysis of KCNs will reveal the knowledge structure and research trends in the literature. This study extracted and analyzed keywords from 264,560 pain-related research articles indexed in IEEE, PubMed, Engineering Village, and Web of Science published between 2002 and 2021. We observed rapid growth in pain literature in the last two decades: the number of articles has grown nearly threefold, and the number of keywords has grown by a factor of 7. We identified emerging and declining research trends in sensors/methods, biomedical, and treatment tracks. We also extracted the most frequently co-occurring keyword pairs and clusters to help researchers recognize the synergies among different pain-related topics. Public Library of Science 2023-09-07 /pmc/articles/PMC10484461/ /pubmed/37676880 http://dx.doi.org/10.1371/journal.pdig.0000331 Text en © 2023 Ozek et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ozek, Burcu Lu, Zhenyuan Pouromran, Fatemeh Radhakrishnan, Srinivasan Kamarthi, Sagar Analysis of pain research literature through keyword Co-occurrence networks |
title | Analysis of pain research literature through keyword Co-occurrence networks |
title_full | Analysis of pain research literature through keyword Co-occurrence networks |
title_fullStr | Analysis of pain research literature through keyword Co-occurrence networks |
title_full_unstemmed | Analysis of pain research literature through keyword Co-occurrence networks |
title_short | Analysis of pain research literature through keyword Co-occurrence networks |
title_sort | analysis of pain research literature through keyword co-occurrence networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484461/ https://www.ncbi.nlm.nih.gov/pubmed/37676880 http://dx.doi.org/10.1371/journal.pdig.0000331 |
work_keys_str_mv | AT ozekburcu analysisofpainresearchliteraturethroughkeywordcooccurrencenetworks AT luzhenyuan analysisofpainresearchliteraturethroughkeywordcooccurrencenetworks AT pouromranfatemeh analysisofpainresearchliteraturethroughkeywordcooccurrencenetworks AT radhakrishnansrinivasan analysisofpainresearchliteraturethroughkeywordcooccurrencenetworks AT kamarthisagar analysisofpainresearchliteraturethroughkeywordcooccurrencenetworks |