Cargando…

Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism

OBJECTIVES: The aim of this study was to investigate an integrated diagnostics approach for prediction of the source of aldosterone overproduction in primary hyperaldosteronism (PA). METHODS: 269 patients from the prospective German Conn Registry with PA were included in this study. After segmentati...

Descripción completa

Detalles Bibliográficos
Autores principales: Mansour, Nabeel, Mittermeier, Andreas, Walter, Roman, Schachtner, Balthasar, Rudolph, Jan, Erber, Bernd, Schmidt, Vanessa F., Heinrich, Daniel, Bruedgam, Denise, Tschaidse, Lea, Nowotny, Hanna, Bidlingmaier, Martin, Kunz, Sonja L., Adolf, Christian, Ricke, Jens, Reincke, Martin, Reisch, Nicole, Wildgruber, Moritz, Ingrisch, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484561/
https://www.ncbi.nlm.nih.gov/pubmed/37693351
http://dx.doi.org/10.3389/fendo.2023.1244342
_version_ 1785102606407827456
author Mansour, Nabeel
Mittermeier, Andreas
Walter, Roman
Schachtner, Balthasar
Rudolph, Jan
Erber, Bernd
Schmidt, Vanessa F.
Heinrich, Daniel
Bruedgam, Denise
Tschaidse, Lea
Nowotny, Hanna
Bidlingmaier, Martin
Kunz, Sonja L.
Adolf, Christian
Ricke, Jens
Reincke, Martin
Reisch, Nicole
Wildgruber, Moritz
Ingrisch, Michael
author_facet Mansour, Nabeel
Mittermeier, Andreas
Walter, Roman
Schachtner, Balthasar
Rudolph, Jan
Erber, Bernd
Schmidt, Vanessa F.
Heinrich, Daniel
Bruedgam, Denise
Tschaidse, Lea
Nowotny, Hanna
Bidlingmaier, Martin
Kunz, Sonja L.
Adolf, Christian
Ricke, Jens
Reincke, Martin
Reisch, Nicole
Wildgruber, Moritz
Ingrisch, Michael
author_sort Mansour, Nabeel
collection PubMed
description OBJECTIVES: The aim of this study was to investigate an integrated diagnostics approach for prediction of the source of aldosterone overproduction in primary hyperaldosteronism (PA). METHODS: 269 patients from the prospective German Conn Registry with PA were included in this study. After segmentation of adrenal glands in native CT images, radiomic features were calculated. The study population consisted of a training (n = 215) and a validation (n = 54) cohort. The k = 25 best radiomic features, selected using maximum-relevance minimum-redundancy (MRMR) feature selection, were used to train a baseline random forest model to predict the result of AVS from imaging alone. In a second step, clinical parameters were integrated. Model performance was assessed via area under the receiver operating characteristic curve (ROC AUC). Permutation feature importance was used to assess the predictive value of selected features. RESULTS: Radiomics features alone allowed only for moderate discrimination of the location of aldosterone overproduction with a ROC AUC of 0.57 for unilateral left (UL), 0.61 for unilateral right (UR), and 0.50 for bilateral (BI) aldosterone overproduction (total 0.56, 95% CI: 0.45-0.65). Integration of clinical parameters into the model substantially improved ROC AUC values (0.61 UL, 0.68 UR, and 0.73 for BI, total 0.67, 95% CI: 0.57-0.77). According to permutation feature importance, lowest potassium value at baseline and saline infusion test (SIT) were the two most important features. CONCLUSION: Integration of clinical parameters into a radiomics machine learning model improves prediction of the source of aldosterone overproduction and subtyping in patients with PA.
format Online
Article
Text
id pubmed-10484561
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-104845612023-09-08 Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism Mansour, Nabeel Mittermeier, Andreas Walter, Roman Schachtner, Balthasar Rudolph, Jan Erber, Bernd Schmidt, Vanessa F. Heinrich, Daniel Bruedgam, Denise Tschaidse, Lea Nowotny, Hanna Bidlingmaier, Martin Kunz, Sonja L. Adolf, Christian Ricke, Jens Reincke, Martin Reisch, Nicole Wildgruber, Moritz Ingrisch, Michael Front Endocrinol (Lausanne) Endocrinology OBJECTIVES: The aim of this study was to investigate an integrated diagnostics approach for prediction of the source of aldosterone overproduction in primary hyperaldosteronism (PA). METHODS: 269 patients from the prospective German Conn Registry with PA were included in this study. After segmentation of adrenal glands in native CT images, radiomic features were calculated. The study population consisted of a training (n = 215) and a validation (n = 54) cohort. The k = 25 best radiomic features, selected using maximum-relevance minimum-redundancy (MRMR) feature selection, were used to train a baseline random forest model to predict the result of AVS from imaging alone. In a second step, clinical parameters were integrated. Model performance was assessed via area under the receiver operating characteristic curve (ROC AUC). Permutation feature importance was used to assess the predictive value of selected features. RESULTS: Radiomics features alone allowed only for moderate discrimination of the location of aldosterone overproduction with a ROC AUC of 0.57 for unilateral left (UL), 0.61 for unilateral right (UR), and 0.50 for bilateral (BI) aldosterone overproduction (total 0.56, 95% CI: 0.45-0.65). Integration of clinical parameters into the model substantially improved ROC AUC values (0.61 UL, 0.68 UR, and 0.73 for BI, total 0.67, 95% CI: 0.57-0.77). According to permutation feature importance, lowest potassium value at baseline and saline infusion test (SIT) were the two most important features. CONCLUSION: Integration of clinical parameters into a radiomics machine learning model improves prediction of the source of aldosterone overproduction and subtyping in patients with PA. Frontiers Media S.A. 2023-08-24 /pmc/articles/PMC10484561/ /pubmed/37693351 http://dx.doi.org/10.3389/fendo.2023.1244342 Text en Copyright © 2023 Mansour, Mittermeier, Walter, Schachtner, Rudolph, Erber, Schmidt, Heinrich, Bruedgam, Tschaidse, Nowotny, Bidlingmaier, Kunz, Adolf, Ricke, Reincke, Reisch, Wildgruber and Ingrisch https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Endocrinology
Mansour, Nabeel
Mittermeier, Andreas
Walter, Roman
Schachtner, Balthasar
Rudolph, Jan
Erber, Bernd
Schmidt, Vanessa F.
Heinrich, Daniel
Bruedgam, Denise
Tschaidse, Lea
Nowotny, Hanna
Bidlingmaier, Martin
Kunz, Sonja L.
Adolf, Christian
Ricke, Jens
Reincke, Martin
Reisch, Nicole
Wildgruber, Moritz
Ingrisch, Michael
Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
title Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
title_full Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
title_fullStr Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
title_full_unstemmed Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
title_short Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
title_sort integration of clinical parameters and ct-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
topic Endocrinology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484561/
https://www.ncbi.nlm.nih.gov/pubmed/37693351
http://dx.doi.org/10.3389/fendo.2023.1244342
work_keys_str_mv AT mansournabeel integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT mittermeierandreas integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT walterroman integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT schachtnerbalthasar integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT rudolphjan integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT erberbernd integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT schmidtvanessaf integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT heinrichdaniel integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT bruedgamdenise integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT tschaidselea integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT nowotnyhanna integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT bidlingmaiermartin integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT kunzsonjal integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT adolfchristian integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT rickejens integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT reinckemartin integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT reischnicole integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT wildgrubermoritz integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism
AT ingrischmichael integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism