Cargando…
Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism
OBJECTIVES: The aim of this study was to investigate an integrated diagnostics approach for prediction of the source of aldosterone overproduction in primary hyperaldosteronism (PA). METHODS: 269 patients from the prospective German Conn Registry with PA were included in this study. After segmentati...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484561/ https://www.ncbi.nlm.nih.gov/pubmed/37693351 http://dx.doi.org/10.3389/fendo.2023.1244342 |
_version_ | 1785102606407827456 |
---|---|
author | Mansour, Nabeel Mittermeier, Andreas Walter, Roman Schachtner, Balthasar Rudolph, Jan Erber, Bernd Schmidt, Vanessa F. Heinrich, Daniel Bruedgam, Denise Tschaidse, Lea Nowotny, Hanna Bidlingmaier, Martin Kunz, Sonja L. Adolf, Christian Ricke, Jens Reincke, Martin Reisch, Nicole Wildgruber, Moritz Ingrisch, Michael |
author_facet | Mansour, Nabeel Mittermeier, Andreas Walter, Roman Schachtner, Balthasar Rudolph, Jan Erber, Bernd Schmidt, Vanessa F. Heinrich, Daniel Bruedgam, Denise Tschaidse, Lea Nowotny, Hanna Bidlingmaier, Martin Kunz, Sonja L. Adolf, Christian Ricke, Jens Reincke, Martin Reisch, Nicole Wildgruber, Moritz Ingrisch, Michael |
author_sort | Mansour, Nabeel |
collection | PubMed |
description | OBJECTIVES: The aim of this study was to investigate an integrated diagnostics approach for prediction of the source of aldosterone overproduction in primary hyperaldosteronism (PA). METHODS: 269 patients from the prospective German Conn Registry with PA were included in this study. After segmentation of adrenal glands in native CT images, radiomic features were calculated. The study population consisted of a training (n = 215) and a validation (n = 54) cohort. The k = 25 best radiomic features, selected using maximum-relevance minimum-redundancy (MRMR) feature selection, were used to train a baseline random forest model to predict the result of AVS from imaging alone. In a second step, clinical parameters were integrated. Model performance was assessed via area under the receiver operating characteristic curve (ROC AUC). Permutation feature importance was used to assess the predictive value of selected features. RESULTS: Radiomics features alone allowed only for moderate discrimination of the location of aldosterone overproduction with a ROC AUC of 0.57 for unilateral left (UL), 0.61 for unilateral right (UR), and 0.50 for bilateral (BI) aldosterone overproduction (total 0.56, 95% CI: 0.45-0.65). Integration of clinical parameters into the model substantially improved ROC AUC values (0.61 UL, 0.68 UR, and 0.73 for BI, total 0.67, 95% CI: 0.57-0.77). According to permutation feature importance, lowest potassium value at baseline and saline infusion test (SIT) were the two most important features. CONCLUSION: Integration of clinical parameters into a radiomics machine learning model improves prediction of the source of aldosterone overproduction and subtyping in patients with PA. |
format | Online Article Text |
id | pubmed-10484561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104845612023-09-08 Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism Mansour, Nabeel Mittermeier, Andreas Walter, Roman Schachtner, Balthasar Rudolph, Jan Erber, Bernd Schmidt, Vanessa F. Heinrich, Daniel Bruedgam, Denise Tschaidse, Lea Nowotny, Hanna Bidlingmaier, Martin Kunz, Sonja L. Adolf, Christian Ricke, Jens Reincke, Martin Reisch, Nicole Wildgruber, Moritz Ingrisch, Michael Front Endocrinol (Lausanne) Endocrinology OBJECTIVES: The aim of this study was to investigate an integrated diagnostics approach for prediction of the source of aldosterone overproduction in primary hyperaldosteronism (PA). METHODS: 269 patients from the prospective German Conn Registry with PA were included in this study. After segmentation of adrenal glands in native CT images, radiomic features were calculated. The study population consisted of a training (n = 215) and a validation (n = 54) cohort. The k = 25 best radiomic features, selected using maximum-relevance minimum-redundancy (MRMR) feature selection, were used to train a baseline random forest model to predict the result of AVS from imaging alone. In a second step, clinical parameters were integrated. Model performance was assessed via area under the receiver operating characteristic curve (ROC AUC). Permutation feature importance was used to assess the predictive value of selected features. RESULTS: Radiomics features alone allowed only for moderate discrimination of the location of aldosterone overproduction with a ROC AUC of 0.57 for unilateral left (UL), 0.61 for unilateral right (UR), and 0.50 for bilateral (BI) aldosterone overproduction (total 0.56, 95% CI: 0.45-0.65). Integration of clinical parameters into the model substantially improved ROC AUC values (0.61 UL, 0.68 UR, and 0.73 for BI, total 0.67, 95% CI: 0.57-0.77). According to permutation feature importance, lowest potassium value at baseline and saline infusion test (SIT) were the two most important features. CONCLUSION: Integration of clinical parameters into a radiomics machine learning model improves prediction of the source of aldosterone overproduction and subtyping in patients with PA. Frontiers Media S.A. 2023-08-24 /pmc/articles/PMC10484561/ /pubmed/37693351 http://dx.doi.org/10.3389/fendo.2023.1244342 Text en Copyright © 2023 Mansour, Mittermeier, Walter, Schachtner, Rudolph, Erber, Schmidt, Heinrich, Bruedgam, Tschaidse, Nowotny, Bidlingmaier, Kunz, Adolf, Ricke, Reincke, Reisch, Wildgruber and Ingrisch https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Mansour, Nabeel Mittermeier, Andreas Walter, Roman Schachtner, Balthasar Rudolph, Jan Erber, Bernd Schmidt, Vanessa F. Heinrich, Daniel Bruedgam, Denise Tschaidse, Lea Nowotny, Hanna Bidlingmaier, Martin Kunz, Sonja L. Adolf, Christian Ricke, Jens Reincke, Martin Reisch, Nicole Wildgruber, Moritz Ingrisch, Michael Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism |
title | Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism |
title_full | Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism |
title_fullStr | Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism |
title_full_unstemmed | Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism |
title_short | Integration of clinical parameters and CT-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism |
title_sort | integration of clinical parameters and ct-based radiomics improves machine learning assisted subtyping of primary hyperaldosteronism |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484561/ https://www.ncbi.nlm.nih.gov/pubmed/37693351 http://dx.doi.org/10.3389/fendo.2023.1244342 |
work_keys_str_mv | AT mansournabeel integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT mittermeierandreas integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT walterroman integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT schachtnerbalthasar integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT rudolphjan integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT erberbernd integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT schmidtvanessaf integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT heinrichdaniel integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT bruedgamdenise integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT tschaidselea integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT nowotnyhanna integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT bidlingmaiermartin integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT kunzsonjal integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT adolfchristian integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT rickejens integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT reinckemartin integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT reischnicole integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT wildgrubermoritz integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism AT ingrischmichael integrationofclinicalparametersandctbasedradiomicsimprovesmachinelearningassistedsubtypingofprimaryhyperaldosteronism |