Cargando…
Spatial assessments in texture analysis: what the radiologist needs to know
To date, studies investigating radiomics-based predictive models have tended to err on the side of data-driven or exploratory analysis of many thousands of extracted features. In particular, spatial assessments of texture have proven to be especially adept at assessing for features of intratumoral h...
Autores principales: | Varghese, Bino A., Fields, Brandon K. K., Hwang, Darryl H., Duddalwar, Vinay A., Matcuk, George R., Cen, Steven Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484588/ https://www.ncbi.nlm.nih.gov/pubmed/37693924 http://dx.doi.org/10.3389/fradi.2023.1240544 |
Ejemplares similares
-
Deep learning image segmentation approaches for malignant bone lesions: a systematic review and meta-analysis
por: Rich, Joseph M., et al.
Publicado: (2023) -
Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach
por: Fields, Brandon K. K., et al.
Publicado: (2023) -
Pregnancy-Associated Breast Cancer: What Radiologists Must Know
por: Soto-Trujillo, Dafne, et al.
Publicado: (2020) -
Identification of robust and reproducible CT‐texture metrics using a customized 3D‐printed texture phantom
por: Varghese, Bino A., et al.
Publicado: (2021) -
Spectrum of opportunistic fungal lung co-infections in COVID-19: What the radiologist needs to know
por: Nair, A.V., et al.
Publicado: (2022)