Cargando…
Hypolipidemic effect of β-caryophyllene in high fat diet and fructose induced type-2 diabetic adult male rats
Skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose elimination, under normal circumstances. High dietary fat consumption increases stored fat mass and is a major risk factor for metabolic disorders. The conventional pharmacological treatments are associated with...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484697/ https://www.ncbi.nlm.nih.gov/pubmed/37693084 http://dx.doi.org/10.6026/973206300181087 |
Sumario: | Skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose elimination, under normal circumstances. High dietary fat consumption increases stored fat mass and is a major risk factor for metabolic disorders. The conventional pharmacological treatments are associated with many adverse side effects and high rates of secondary failure which lead to an increasing demand for natural products with anti-diabetic activity and lesser side effects. β-Caryophyllene is a naturally occurring sequiterpene that may be found in cannabis and a range of culinary herbs and spices. It contains antioxidant, anti-inflammatory, and anti-lipidemic effects, among others. However, the effect of β-Caryophyllene on glucose absorption and oxidation, is yet unknown. Hence, the current study was intended to investigate the anti-diabetic impact of β-Caryophyllene in type-2 diabetes caused by a high-fat diet. To evaluate its anti-diabetic efficacy, high fat diet and fructose-induced type-2 diabetic rats were administered an effective dosage of β-Caryophyllene (200 mg/kg b.wt, orally for 30 days). The treatment of diabetes-induced rats with β-Caryophyllene restored the altered levels of blood glucose, serum insulin as well as lipid parameters. Our findings show that β-caryophyllene improves glycemia control by alleviating dyslipidemia in type-2 diabetic rats. From the present findings, it is evident that β-caryophyllene can be used as an anti-diabetic drug. |
---|