Cargando…

Multiparameter prediction of myeloid neoplasia risk

The myeloid neoplasms encompass acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms. Most cases arise from the shared ancestor of clonal hematopoiesis (CH). Here we analyze data from 454,340 UK Biobank participants, of whom 1,808 developed a myeloid neoplasm 0–15 years...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Muxin, Kovilakam, Sruthi Cheloor, Dunn, William G., Marando, Ludovica, Barcena, Clea, Mohorianu, Irina, Smith, Alexandra, Kar, Siddhartha P., Fabre, Margarete A., Gerstung, Moritz, Cargo, Catherine A., Malcovati, Luca, Quiros, Pedro M., Vassiliou, George S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484784/
https://www.ncbi.nlm.nih.gov/pubmed/37620601
http://dx.doi.org/10.1038/s41588-023-01472-1
_version_ 1785102659390275584
author Gu, Muxin
Kovilakam, Sruthi Cheloor
Dunn, William G.
Marando, Ludovica
Barcena, Clea
Mohorianu, Irina
Smith, Alexandra
Kar, Siddhartha P.
Fabre, Margarete A.
Gerstung, Moritz
Cargo, Catherine A.
Malcovati, Luca
Quiros, Pedro M.
Vassiliou, George S.
author_facet Gu, Muxin
Kovilakam, Sruthi Cheloor
Dunn, William G.
Marando, Ludovica
Barcena, Clea
Mohorianu, Irina
Smith, Alexandra
Kar, Siddhartha P.
Fabre, Margarete A.
Gerstung, Moritz
Cargo, Catherine A.
Malcovati, Luca
Quiros, Pedro M.
Vassiliou, George S.
author_sort Gu, Muxin
collection PubMed
description The myeloid neoplasms encompass acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms. Most cases arise from the shared ancestor of clonal hematopoiesis (CH). Here we analyze data from 454,340 UK Biobank participants, of whom 1,808 developed a myeloid neoplasm 0–15 years after recruitment. We describe the differences in CH mutational landscapes and hematology/biochemistry test parameters among individuals that later develop myeloid neoplasms (pre-MN) versus controls, finding that disease-specific changes are detectable years before diagnosis. By analyzing differences between ‘pre-MN’ and controls, we develop and validate Cox regression models quantifying the risk of progression to each myeloid neoplasm subtype. We construct ‘MN-predict’, a web application that generates time-dependent predictions with the input of basic blood tests and genetic data. Our study demonstrates that many individuals that develop myeloid neoplasms can be identified years in advance and provides a framework for disease-specific prognostication that will be of substantial use to researchers and physicians.
format Online
Article
Text
id pubmed-10484784
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-104847842023-09-09 Multiparameter prediction of myeloid neoplasia risk Gu, Muxin Kovilakam, Sruthi Cheloor Dunn, William G. Marando, Ludovica Barcena, Clea Mohorianu, Irina Smith, Alexandra Kar, Siddhartha P. Fabre, Margarete A. Gerstung, Moritz Cargo, Catherine A. Malcovati, Luca Quiros, Pedro M. Vassiliou, George S. Nat Genet Article The myeloid neoplasms encompass acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms. Most cases arise from the shared ancestor of clonal hematopoiesis (CH). Here we analyze data from 454,340 UK Biobank participants, of whom 1,808 developed a myeloid neoplasm 0–15 years after recruitment. We describe the differences in CH mutational landscapes and hematology/biochemistry test parameters among individuals that later develop myeloid neoplasms (pre-MN) versus controls, finding that disease-specific changes are detectable years before diagnosis. By analyzing differences between ‘pre-MN’ and controls, we develop and validate Cox regression models quantifying the risk of progression to each myeloid neoplasm subtype. We construct ‘MN-predict’, a web application that generates time-dependent predictions with the input of basic blood tests and genetic data. Our study demonstrates that many individuals that develop myeloid neoplasms can be identified years in advance and provides a framework for disease-specific prognostication that will be of substantial use to researchers and physicians. Nature Publishing Group US 2023-08-24 2023 /pmc/articles/PMC10484784/ /pubmed/37620601 http://dx.doi.org/10.1038/s41588-023-01472-1 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Gu, Muxin
Kovilakam, Sruthi Cheloor
Dunn, William G.
Marando, Ludovica
Barcena, Clea
Mohorianu, Irina
Smith, Alexandra
Kar, Siddhartha P.
Fabre, Margarete A.
Gerstung, Moritz
Cargo, Catherine A.
Malcovati, Luca
Quiros, Pedro M.
Vassiliou, George S.
Multiparameter prediction of myeloid neoplasia risk
title Multiparameter prediction of myeloid neoplasia risk
title_full Multiparameter prediction of myeloid neoplasia risk
title_fullStr Multiparameter prediction of myeloid neoplasia risk
title_full_unstemmed Multiparameter prediction of myeloid neoplasia risk
title_short Multiparameter prediction of myeloid neoplasia risk
title_sort multiparameter prediction of myeloid neoplasia risk
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484784/
https://www.ncbi.nlm.nih.gov/pubmed/37620601
http://dx.doi.org/10.1038/s41588-023-01472-1
work_keys_str_mv AT gumuxin multiparameterpredictionofmyeloidneoplasiarisk
AT kovilakamsruthicheloor multiparameterpredictionofmyeloidneoplasiarisk
AT dunnwilliamg multiparameterpredictionofmyeloidneoplasiarisk
AT marandoludovica multiparameterpredictionofmyeloidneoplasiarisk
AT barcenaclea multiparameterpredictionofmyeloidneoplasiarisk
AT mohorianuirina multiparameterpredictionofmyeloidneoplasiarisk
AT smithalexandra multiparameterpredictionofmyeloidneoplasiarisk
AT karsiddharthap multiparameterpredictionofmyeloidneoplasiarisk
AT fabremargaretea multiparameterpredictionofmyeloidneoplasiarisk
AT gerstungmoritz multiparameterpredictionofmyeloidneoplasiarisk
AT cargocatherinea multiparameterpredictionofmyeloidneoplasiarisk
AT malcovatiluca multiparameterpredictionofmyeloidneoplasiarisk
AT quirospedrom multiparameterpredictionofmyeloidneoplasiarisk
AT vassiliougeorges multiparameterpredictionofmyeloidneoplasiarisk