Cargando…
Multiparameter prediction of myeloid neoplasia risk
The myeloid neoplasms encompass acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms. Most cases arise from the shared ancestor of clonal hematopoiesis (CH). Here we analyze data from 454,340 UK Biobank participants, of whom 1,808 developed a myeloid neoplasm 0–15 years...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484784/ https://www.ncbi.nlm.nih.gov/pubmed/37620601 http://dx.doi.org/10.1038/s41588-023-01472-1 |
_version_ | 1785102659390275584 |
---|---|
author | Gu, Muxin Kovilakam, Sruthi Cheloor Dunn, William G. Marando, Ludovica Barcena, Clea Mohorianu, Irina Smith, Alexandra Kar, Siddhartha P. Fabre, Margarete A. Gerstung, Moritz Cargo, Catherine A. Malcovati, Luca Quiros, Pedro M. Vassiliou, George S. |
author_facet | Gu, Muxin Kovilakam, Sruthi Cheloor Dunn, William G. Marando, Ludovica Barcena, Clea Mohorianu, Irina Smith, Alexandra Kar, Siddhartha P. Fabre, Margarete A. Gerstung, Moritz Cargo, Catherine A. Malcovati, Luca Quiros, Pedro M. Vassiliou, George S. |
author_sort | Gu, Muxin |
collection | PubMed |
description | The myeloid neoplasms encompass acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms. Most cases arise from the shared ancestor of clonal hematopoiesis (CH). Here we analyze data from 454,340 UK Biobank participants, of whom 1,808 developed a myeloid neoplasm 0–15 years after recruitment. We describe the differences in CH mutational landscapes and hematology/biochemistry test parameters among individuals that later develop myeloid neoplasms (pre-MN) versus controls, finding that disease-specific changes are detectable years before diagnosis. By analyzing differences between ‘pre-MN’ and controls, we develop and validate Cox regression models quantifying the risk of progression to each myeloid neoplasm subtype. We construct ‘MN-predict’, a web application that generates time-dependent predictions with the input of basic blood tests and genetic data. Our study demonstrates that many individuals that develop myeloid neoplasms can be identified years in advance and provides a framework for disease-specific prognostication that will be of substantial use to researchers and physicians. |
format | Online Article Text |
id | pubmed-10484784 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-104847842023-09-09 Multiparameter prediction of myeloid neoplasia risk Gu, Muxin Kovilakam, Sruthi Cheloor Dunn, William G. Marando, Ludovica Barcena, Clea Mohorianu, Irina Smith, Alexandra Kar, Siddhartha P. Fabre, Margarete A. Gerstung, Moritz Cargo, Catherine A. Malcovati, Luca Quiros, Pedro M. Vassiliou, George S. Nat Genet Article The myeloid neoplasms encompass acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms. Most cases arise from the shared ancestor of clonal hematopoiesis (CH). Here we analyze data from 454,340 UK Biobank participants, of whom 1,808 developed a myeloid neoplasm 0–15 years after recruitment. We describe the differences in CH mutational landscapes and hematology/biochemistry test parameters among individuals that later develop myeloid neoplasms (pre-MN) versus controls, finding that disease-specific changes are detectable years before diagnosis. By analyzing differences between ‘pre-MN’ and controls, we develop and validate Cox regression models quantifying the risk of progression to each myeloid neoplasm subtype. We construct ‘MN-predict’, a web application that generates time-dependent predictions with the input of basic blood tests and genetic data. Our study demonstrates that many individuals that develop myeloid neoplasms can be identified years in advance and provides a framework for disease-specific prognostication that will be of substantial use to researchers and physicians. Nature Publishing Group US 2023-08-24 2023 /pmc/articles/PMC10484784/ /pubmed/37620601 http://dx.doi.org/10.1038/s41588-023-01472-1 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Gu, Muxin Kovilakam, Sruthi Cheloor Dunn, William G. Marando, Ludovica Barcena, Clea Mohorianu, Irina Smith, Alexandra Kar, Siddhartha P. Fabre, Margarete A. Gerstung, Moritz Cargo, Catherine A. Malcovati, Luca Quiros, Pedro M. Vassiliou, George S. Multiparameter prediction of myeloid neoplasia risk |
title | Multiparameter prediction of myeloid neoplasia risk |
title_full | Multiparameter prediction of myeloid neoplasia risk |
title_fullStr | Multiparameter prediction of myeloid neoplasia risk |
title_full_unstemmed | Multiparameter prediction of myeloid neoplasia risk |
title_short | Multiparameter prediction of myeloid neoplasia risk |
title_sort | multiparameter prediction of myeloid neoplasia risk |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484784/ https://www.ncbi.nlm.nih.gov/pubmed/37620601 http://dx.doi.org/10.1038/s41588-023-01472-1 |
work_keys_str_mv | AT gumuxin multiparameterpredictionofmyeloidneoplasiarisk AT kovilakamsruthicheloor multiparameterpredictionofmyeloidneoplasiarisk AT dunnwilliamg multiparameterpredictionofmyeloidneoplasiarisk AT marandoludovica multiparameterpredictionofmyeloidneoplasiarisk AT barcenaclea multiparameterpredictionofmyeloidneoplasiarisk AT mohorianuirina multiparameterpredictionofmyeloidneoplasiarisk AT smithalexandra multiparameterpredictionofmyeloidneoplasiarisk AT karsiddharthap multiparameterpredictionofmyeloidneoplasiarisk AT fabremargaretea multiparameterpredictionofmyeloidneoplasiarisk AT gerstungmoritz multiparameterpredictionofmyeloidneoplasiarisk AT cargocatherinea multiparameterpredictionofmyeloidneoplasiarisk AT malcovatiluca multiparameterpredictionofmyeloidneoplasiarisk AT quirospedrom multiparameterpredictionofmyeloidneoplasiarisk AT vassiliougeorges multiparameterpredictionofmyeloidneoplasiarisk |