Cargando…
Genome-wide prediction of disease variant effects with a deep protein language model
Predicting the effects of coding variants is a major challenge. While recent deep-learning models have improved variant effect prediction accuracy, they cannot analyze all coding variants due to dependency on close homologs or software limitations. Here we developed a workflow using ESM1b, a 650-mil...
Autores principales: | Brandes, Nadav, Goldman, Grant, Wang, Charlotte H., Ye, Chun Jimmie, Ntranos, Vasilis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484790/ https://www.ncbi.nlm.nih.gov/pubmed/37563329 http://dx.doi.org/10.1038/s41588-023-01465-0 |
Ejemplares similares
-
The language of proteins: NLP, machine learning & protein sequences
por: Ofer, Dan, et al.
Publicado: (2021) -
ProteinBERT: a universal deep-learning model of protein sequence and function
por: Brandes, Nadav, et al.
Publicado: (2022) -
GPN-MSA: an alignment-based DNA language model for genome-wide variant effect prediction
por: Benegas, Gonzalo, et al.
Publicado: (2023) -
PWAS: proteome-wide association study—linking genes and phenotypes by functional variation in proteins
por: Brandes, Nadav, et al.
Publicado: (2020) -
DNA language models are powerful predictors of genome-wide variant effects
por: Benegas, Gonzalo, et al.
Publicado: (2023)