Cargando…
Pelvic PET/MR attenuation correction in the image space using deep learning
INTRODUCTION: The five-class Dixon-based PET/MR attenuation correction (AC) model, which adds bone information to the four-class model by registering major bones from a bone atlas, has been shown to be error-prone. In this study, we introduce a novel method of accounting for bone in pelvic PET/MR AC...
Autores principales: | Abrahamsen, Bendik Skarre, Knudtsen, Ingerid Skjei, Eikenes, Live, Bathen, Tone Frost, Elschot, Mattijs |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484800/ https://www.ncbi.nlm.nih.gov/pubmed/37692851 http://dx.doi.org/10.3389/fonc.2023.1220009 |
Ejemplares similares
-
Label-set impact on deep learning-based prostate segmentation on MRI
por: Meglič, Jakob, et al.
Publicado: (2023) -
Exploring the diagnostic potential of adding T2 dependence in diffusion-weighted MR imaging of the prostate
por: Syversen, Ingrid Framås, et al.
Publicado: (2021) -
The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images
por: Sunoqrot, Mohammed R. S., et al.
Publicado: (2021) -
Assessment of pulmonary (18)F-FDG-PET uptake and cytokine profiles in non-small cell lung cancer patients treated with radiotherapy and erlotinib
por: Abravan, Azadeh, et al.
Publicado: (2017) -
Automated reference tissue normalization of T2-weighted MR images of the prostate using object recognition
por: Sunoqrot, Mohammed R. S., et al.
Publicado: (2020)