Cargando…
Generation of a novel three-dimensional scaffold-based model of the bovine endometrium
Bovine in vitro endometrial models that resemble tissue function in vivo are needed to study infertility, long-term uterine alterations induced by pathogens and impact of endocrine disruptor chemicals on reproductive function and other reproductive system complications that cause high economic losse...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484811/ https://www.ncbi.nlm.nih.gov/pubmed/37154859 http://dx.doi.org/10.1007/s11259-023-10130-0 |
_version_ | 1785102666125279232 |
---|---|
author | Díez, MC. Przyborski, S. del Cerro, A. Alonso-Guervós, M. Iglesias-Cabo, T. Carrocera, S. García, MA. Fernández, M. Alonso, L. Muñoz, M. |
author_facet | Díez, MC. Przyborski, S. del Cerro, A. Alonso-Guervós, M. Iglesias-Cabo, T. Carrocera, S. García, MA. Fernández, M. Alonso, L. Muñoz, M. |
author_sort | Díez, MC. |
collection | PubMed |
description | Bovine in vitro endometrial models that resemble tissue function in vivo are needed to study infertility, long-term uterine alterations induced by pathogens and impact of endocrine disruptor chemicals on reproductive function and other reproductive system complications that cause high economic losses in livestock species. The present study aimed to generate an innovative, reproducible, and functional 3D scaffold-based model of the bovine endometrium structurally robust for long term-culture. We developed a multicellular model containing both endometrial epithelial and stromal cells. Epithelial cells organized to form a luminal-like epithelial layer on the surface of the scaffold. Stromal cells produced their own extracellular matrix forming a stable subepithelial compartment that physiologically resembles the normal endometrium. Both cell types released prostaglandin E(2) and prostaglandin F(2α) following a treatment with oxytocin and arachidonic acid. Additionally signal pathways mediating oxytocin and arachidonic acid stimulation of prostaglandin synthesis were analyzed by real time PCR (RT-PCR). Oxytocin receptor (OXTR), prostaglandin E(2) receptor 2 (EP2), prostaglandin E(2) receptor 4 (EP4), prostaglandin F receptor (PTGFR), prostaglandin E synthase (PTGES), PGF-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (COX-2) expression was detected in both control and treatment groups, however, only significant changes in abundance of OXTR mRNA transcripts were found. The results obtained by this study are a step forward in bovine in vitro culture technology. This 3D scaffold-based model provides a platform to study regulatory mechanisms involved in endometrial physiology and can set the basis for a broader tool for designing and testing novel therapeutic strategies for recurrent uterine pathologies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11259-023-10130-0. |
format | Online Article Text |
id | pubmed-10484811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-104848112023-09-09 Generation of a novel three-dimensional scaffold-based model of the bovine endometrium Díez, MC. Przyborski, S. del Cerro, A. Alonso-Guervós, M. Iglesias-Cabo, T. Carrocera, S. García, MA. Fernández, M. Alonso, L. Muñoz, M. Vet Res Commun Research Bovine in vitro endometrial models that resemble tissue function in vivo are needed to study infertility, long-term uterine alterations induced by pathogens and impact of endocrine disruptor chemicals on reproductive function and other reproductive system complications that cause high economic losses in livestock species. The present study aimed to generate an innovative, reproducible, and functional 3D scaffold-based model of the bovine endometrium structurally robust for long term-culture. We developed a multicellular model containing both endometrial epithelial and stromal cells. Epithelial cells organized to form a luminal-like epithelial layer on the surface of the scaffold. Stromal cells produced their own extracellular matrix forming a stable subepithelial compartment that physiologically resembles the normal endometrium. Both cell types released prostaglandin E(2) and prostaglandin F(2α) following a treatment with oxytocin and arachidonic acid. Additionally signal pathways mediating oxytocin and arachidonic acid stimulation of prostaglandin synthesis were analyzed by real time PCR (RT-PCR). Oxytocin receptor (OXTR), prostaglandin E(2) receptor 2 (EP2), prostaglandin E(2) receptor 4 (EP4), prostaglandin F receptor (PTGFR), prostaglandin E synthase (PTGES), PGF-synthase (PGFS) and prostaglandin-endoperoxide synthase 2 (COX-2) expression was detected in both control and treatment groups, however, only significant changes in abundance of OXTR mRNA transcripts were found. The results obtained by this study are a step forward in bovine in vitro culture technology. This 3D scaffold-based model provides a platform to study regulatory mechanisms involved in endometrial physiology and can set the basis for a broader tool for designing and testing novel therapeutic strategies for recurrent uterine pathologies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11259-023-10130-0. Springer Netherlands 2023-05-08 2023 /pmc/articles/PMC10484811/ /pubmed/37154859 http://dx.doi.org/10.1007/s11259-023-10130-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Díez, MC. Przyborski, S. del Cerro, A. Alonso-Guervós, M. Iglesias-Cabo, T. Carrocera, S. García, MA. Fernández, M. Alonso, L. Muñoz, M. Generation of a novel three-dimensional scaffold-based model of the bovine endometrium |
title | Generation of a novel three-dimensional scaffold-based model of the bovine endometrium |
title_full | Generation of a novel three-dimensional scaffold-based model of the bovine endometrium |
title_fullStr | Generation of a novel three-dimensional scaffold-based model of the bovine endometrium |
title_full_unstemmed | Generation of a novel three-dimensional scaffold-based model of the bovine endometrium |
title_short | Generation of a novel three-dimensional scaffold-based model of the bovine endometrium |
title_sort | generation of a novel three-dimensional scaffold-based model of the bovine endometrium |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484811/ https://www.ncbi.nlm.nih.gov/pubmed/37154859 http://dx.doi.org/10.1007/s11259-023-10130-0 |
work_keys_str_mv | AT diezmc generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT przyborskis generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT delcerroa generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT alonsoguervosm generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT iglesiascabot generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT carroceras generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT garciama generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT fernandezm generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT alonsol generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium AT munozm generationofanovelthreedimensionalscaffoldbasedmodelofthebovineendometrium |