Cargando…

Heat waves characteristics intensification across Indian smart cities

Indian cities have frequently observed intense and severe heat waves for the last few years. It will be primarily due to a significant increase in the variation in heat wave characteristics like duration, frequency, and intensity across the urban regions of India. This study will determine the impac...

Descripción completa

Detalles Bibliográficos
Autores principales: Goyal, Manish Kumar, Singh, Shivam, Jain, Vijay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484900/
https://www.ncbi.nlm.nih.gov/pubmed/37679392
http://dx.doi.org/10.1038/s41598-023-41968-8
Descripción
Sumario:Indian cities have frequently observed intense and severe heat waves for the last few years. It will be primarily due to a significant increase in the variation in heat wave characteristics like duration, frequency, and intensity across the urban regions of India. This study will determine the impact of future climate scenarios like SSP 245 and 585 over the heat wave characteristics. It will present the comparison between heat waves characteristics in the historical time (1981 to 2020) with future projections, i.e., D(1) (2021–2046), D(2) (2047–2072), and D(3) (2073–2098) for different climate scenarios across Indian smart cities. It is observed that the Coastal, Interior Peninsular, and North-Central regions will observe intense and frequent heat waves in the future under SSP 245 and 585 scenarios. A nearly two-fold increase in heat wave' mean duration will be observed in the smart cities of the Interior Peninsular, Coastal, and North Central zones. Thiruvananthapuram city on the west coast has the maximum hazard associated with heat waves among all the smart cities of India under both SSPs. This study assists smart city policymakers in improving the planning and implementation of heat wave adaptation and mitigation plans based on the proposed framework for heat action plans and heat wave characteristics for improving urban health well-being under hot weather extremes in different homogeneous temperature zones.