Cargando…
Mining multi-center heterogeneous medical data with distributed synthetic learning
Overcoming barriers on the use of multi-center data for medical analytics is challenging due to privacy protection and data heterogeneity in the healthcare system. In this study, we propose the Distributed Synthetic Learning (DSL) architecture to learn across multiple medical centers and ensure the...
Autores principales: | Chang, Qi, Yan, Zhennan, Zhou, Mu, Qu, Hui, He, Xiaoxiao, Zhang, Han, Baskaran, Lohendran, Al’Aref, Subhi, Li, Hongsheng, Zhang, Shaoting, Metaxas, Dimitris N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484909/ https://www.ncbi.nlm.nih.gov/pubmed/37679325 http://dx.doi.org/10.1038/s41467-023-40687-y |
Ejemplares similares
-
Publisher Correction: Mining multi-center heterogeneous medical data with distributed synthetic learning
por: Chang, Qi, et al.
Publicado: (2023) -
A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer
por: Ding, Kexin, et al.
Publicado: (2023) -
Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning
por: Qu, Hui, et al.
Publicado: (2021) -
End-to-End, Pixel-Wise Vessel-Specific Coronary and Aortic Calcium Detection and Scoring Using Deep Learning
por: Singh, Gurpreet, et al.
Publicado: (2021) -
Application of deep neural networks for inferring pressure in polymeric acoustic transponders/sensors
por: Alaie, Seyedhamidreza, et al.
Publicado: (2023)