Cargando…
Sperm motility assessed by deep convolutional neural networks into WHO categories
Semen analysis is central in infertility investigation. Manual assessment of sperm motility according to the WHO recommendations is the golden standard, and extensive training is a requirement for accurate and reproducible results. Deep convolutional neural networks (DCNN) are especially suitable fo...
Autores principales: | Haugen, Trine B., Witczak, Oliwia, Hicks, Steven A., Björndahl, Lars, Andersen, Jorunn M., Riegler, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484948/ https://www.ncbi.nlm.nih.gov/pubmed/37679484 http://dx.doi.org/10.1038/s41598-023-41871-2 |
Ejemplares similares
-
Machine Learning-Based Analysis of Sperm Videos and Participant Data for Male Fertility Prediction
por: Hicks, Steven A., et al.
Publicado: (2019) -
Levels of L-carnitine in human seminal plasma are associated with sperm fatty acid composition
por: Iliceto, Mario, et al.
Publicado: (2022) -
VISEM-Tracking, a human spermatozoa tracking dataset
por: Thambawita, Vajira, et al.
Publicado: (2023) -
Hypotonic challenge reduces human sperm motility through coiling and folding of the tail
por: Holmes, Emma, et al.
Publicado: (2020) -
Body Mass Index Is Associated with Impaired Semen Characteristics and Reduced Levels of Anti-Müllerian Hormone across a Wide Weight Range
por: Andersen, Jorunn M., et al.
Publicado: (2015)