Cargando…
Road traffic flow prediction based on dynamic spatiotemporal graph attention network
To improve the prediction accuracy of traffic flow under the influence of nearby time traffic flow disturbance, a dynamic spatiotemporal graph attention network traffic flow prediction model based on the attention mechanism was proposed. Considering the macroscopic periodic characteristics of traffi...
Autores principales: | Chen, Yuguang, Huang, Jintao, Xu, Hongbin, Guo, Jincheng, Su, Linyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484953/ https://www.ncbi.nlm.nih.gov/pubmed/37679482 http://dx.doi.org/10.1038/s41598-023-41932-6 |
Ejemplares similares
-
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
GATR: A Road Network Traffic Violation Prediction Method Based on Graph Attention Network
por: Zhou, Yuquan, et al.
Publicado: (2023) -
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021)