Cargando…
Clustering microbiome data using mixtures of logistic normal multinomial models
Discrete data such as counts of microbiome taxa resulting from next-generation sequencing are routinely encountered in bioinformatics. Taxa count data in microbiome studies are typically high-dimensional, over-dispersed, and can only reveal relative abundance therefore being treated as compositional...
Autores principales: | Fang, Yuan, Subedi, Sanjeena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484970/ https://www.ncbi.nlm.nih.gov/pubmed/37679485 http://dx.doi.org/10.1038/s41598-023-41318-8 |
Ejemplares similares
-
A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data
por: Silva, Anjali, et al.
Publicado: (2019) -
ChromDMM: a Dirichlet-multinomial mixture model for clustering heterogeneous epigenetic data
por: Osmala, Maria, et al.
Publicado: (2022) -
Bayesian Lasso and multinomial logistic regression on GPU
por: Češnovar, Rok, et al.
Publicado: (2017) -
Finite mixtures of matrix variate Poisson-log normal distributions for three-way count data
por: Silva, Anjali, et al.
Publicado: (2023) -
Validation and updating of risk models based on multinomial logistic regression
por: Van Calster, Ben, et al.
Publicado: (2017)