Cargando…

Suppression of Fibroblast Growth Factor Receptor-5 (FGFR5) has no Impact on Axon Regeneration after SCI

One of the most common forms of the mammalian central nervous system (CNS) injuries is spinal cord injury (SCI), and any lesion to the CNS can result in a lifelong functional impairment since CNS axons cannot regenerate. The relative axon regenerating genes following spinal SCI were examined using t...

Descripción completa

Detalles Bibliográficos
Autor principal: Alhajlah, Sharif
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485452/
https://www.ncbi.nlm.nih.gov/pubmed/37693980
http://dx.doi.org/10.4103/jpbs.jpbs_199_23
Descripción
Sumario:One of the most common forms of the mammalian central nervous system (CNS) injuries is spinal cord injury (SCI), and any lesion to the CNS can result in a lifelong functional impairment since CNS axons cannot regenerate. The relative axon regenerating genes following spinal SCI were examined using the regenerative SN, pSN + DC, and non-regenerating DC lesion models. By using qRT-PCR, we discovered that fibroblast growth factor receptor-5 (FGFR5) was 4.2-fold more highly expressed in non-regeneration lesions compared to intact control and regenerating animals. Furthermore, in cultured dorsal root ganglion neurons (DRGN), short interfering RNA (siRNA)-mediated knockdown of FGFR5 had no effect on DRGN neurite outgrowth, indicating that the gene’s suppression has no effect on axon regeneration and may play other roles in the CNS besides axon regeneration.