Cargando…

Fermi-Level Engineering of Nitrogen Core-Doped Armchair Graphene Nanoribbons

[Image: see text] Substitutional heteroatom doping of bottom-up engineered 1D graphene nanoribbons (GNRs) is a versatile tool for realizing low-dimensional functional materials for nanoelectronics and sensing. Previous efforts have largely relied on replacing C–H groups lining the edges of GNRs with...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Ethan Chi Ho, Jacobse, Peter H., Jiang, Jingwei, Wang, Ziyi, Louie, Steven G., Crommie, Michael F., Fischer, Felix R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485924/
https://www.ncbi.nlm.nih.gov/pubmed/37611208
http://dx.doi.org/10.1021/jacs.3c05755
Descripción
Sumario:[Image: see text] Substitutional heteroatom doping of bottom-up engineered 1D graphene nanoribbons (GNRs) is a versatile tool for realizing low-dimensional functional materials for nanoelectronics and sensing. Previous efforts have largely relied on replacing C–H groups lining the edges of GNRs with trigonal planar N atoms. This type of atomically precise doping, however, only results in a modest realignment of the valence band (VB) and conduction band (CB) energies. Here, we report the design, bottom-up synthesis, and spectroscopic characterization of nitrogen core-doped 5-atom-wide armchair GNRs (N(2)-5-AGNRs) that yield much greater energy-level shifting of the GNR electronic structure. Here, the substitution of C atoms with N atoms along the backbone of the GNR introduces a single surplus π-electron per dopant that populates the electronic states associated with previously unoccupied bands. First-principles DFT-LDA calculations confirm that a sizable shift in Fermi energy (∼1.0 eV) is accompanied by a broad reconfiguration of the band structure, including the opening of a new band gap and the transition from a direct to an indirect semiconducting band gap. Scanning tunneling spectroscopy (STS) lift-off charge transport experiments corroborate the theoretical results and reveal the relationship among substitutional heteroatom doping, Fermi-level shifting, electronic band structure, and topological engineering for this new N-doped GNR.