Cargando…
SubMDTA: drug target affinity prediction based on substructure extraction and multi-scale features
BACKGROUND: Drug–target affinity (DTA) prediction is a critical step in the field of drug discovery. In recent years, deep learning-based methods have emerged for DTA prediction. In order to solve the problem of fusion of substructure information of drug molecular graphs and utilize multi-scale info...
Autores principales: | Pan, Shourun, Xia, Leiming, Xu, Lei, Li, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485962/ https://www.ncbi.nlm.nih.gov/pubmed/37679724 http://dx.doi.org/10.1186/s12859-023-05460-4 |
Ejemplares similares
-
Drug-target binding affinity prediction using message passing neural network and self supervised learning
por: Xia, Leiming, et al.
Publicado: (2023) -
Molecular Property Prediction by Combining LSTM and GAT
por: Xu, Lei, et al.
Publicado: (2023) -
Isolation of Pseudomonas oleovorans Carrying Multidrug Resistance Proteins MdtA and MdtB from Wastewater
por: Wang, Haifeng, et al.
Publicado: (2023) -
MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2023) -
Jets: Substructure
por: Chien, Yang-Ting
Publicado: (2020)