Cargando…

Effects of bathing-induced changes in body temperature on sleep

BACKGROUND: Passive body heating before sleep is well known to lead to improved sleep. However, the effects of the degree of change in body temperature by bathing on sleep quality are unclear. The present study aimed to clarify the effects on sleep of bathing-induced changes in body temperature. MET...

Descripción completa

Detalles Bibliográficos
Autores principales: Maeda, Takafumi, Koga, Hiroko, Nonaka, Takashi, Higuchi, Shigekazu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486043/
https://www.ncbi.nlm.nih.gov/pubmed/37684642
http://dx.doi.org/10.1186/s40101-023-00337-0
Descripción
Sumario:BACKGROUND: Passive body heating before sleep is well known to lead to improved sleep. However, the effects of the degree of change in body temperature by bathing on sleep quality are unclear. The present study aimed to clarify the effects on sleep of bathing-induced changes in body temperature. METHODS: Twenty-three healthy males and females in their 20 s to 50 s bathed in their homes 1.5–2 h before bedtime under three bathing conditions: showering only; short bathing in a bathtub; and long bathing in a bathtub. Sublingual and skin temperatures and thermal sensation before and after bathing, sleep indices such as sleep onset latency, time in bed, sleep efficiency, and wake after sleep onset, all of which were evaluated using an actimeter, and subjective evaluations of sleep were compared among conditions. RESULTS: Sublingual temperature just after bathing was significantly higher with long bathing than with other conditions, and the fall in sublingual temperature from after bathing to before sleep was significantly larger with long bathing than with short bathing. Sleep onset latency by actimeter was significantly reduced with long bathing compared to showering. In addition, subjective evaluations of falling asleep and sleep quality were better with long bathing than with showering or short bathing. CONCLUSIONS: In conclusion, bathing conditions that produce a 0.9 °C increase in sublingual temperature appear effective for falling asleep and sleep quality, because core temperature shows a greater drop to before sleep than those producing an increase of about 0.3 °C increase in sublingual temperature.