Cargando…
Survival Prediction of Patients with Bladder Cancer after Cystectomy Based on Clinical, Radiomics, and Deep-Learning Descriptors
SIMPLE SUMMARY: Survival prediction of bladder cancer patients following cystectomy is essential for treatment planning. We propose a hybrid method that integrates clinical, radiomics, and deep-learning descriptors to improve survival prediction models. This approach demonstrates potential for more...
Autores principales: | Sun, Di, Hadjiiski, Lubomir, Gormley, John, Chan, Heang-Ping, Caoili, Elaine M., Cohan, Richard H., Alva, Ajjai, Gulani, Vikas, Zhou, Chuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486459/ https://www.ncbi.nlm.nih.gov/pubmed/37686647 http://dx.doi.org/10.3390/cancers15174372 |
Ejemplares similares
-
Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning
por: Cha, Kenny H., et al.
Publicado: (2017) -
Bladder Cancer Segmentation in CT for Treatment Response Assessment: Application of Deep-Learning Convolution Neural Network—A Pilot Study
por: Cha, Kenny H., et al.
Publicado: (2016) -
Deep Learning Approach for Assessment of Bladder Cancer Treatment Response
por: Wu, Eric, et al.
Publicado: (2019) -
Intraobserver Variability in Bladder Cancer Treatment Response Assessment With and Without Computerized Decision Support
por: Hadjiiski, Lubomir M., et al.
Publicado: (2020) -
Recursive Training Strategy for a Deep Learning Network for Segmentation of Pathology Nuclei With Incomplete Annotation
por: ZHOU, CHUAN, et al.
Publicado: (2022)