Cargando…

The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain

Diagnosing normal-pressure hydrocephalus (NPH) via non-contrast computed tomography (CT) brain scans is presently a formidable task due to the lack of universally agreed-upon standards for radiographic parameter measurement. A variety of radiological parameters, such as Evans’ index, narrow sulci at...

Descripción completa

Detalles Bibliográficos
Autores principales: Songsaeng, Dittapong, Nava-apisak, Poonsuta, Wongsripuemtet, Jittsupa, Kingchan, Siripra, Angkoondittaphong, Phuriwat, Phawaphutanon, Phattaranan, Supratak, Akara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486480/
https://www.ncbi.nlm.nih.gov/pubmed/37685378
http://dx.doi.org/10.3390/diagnostics13172840
_version_ 1785103016505901056
author Songsaeng, Dittapong
Nava-apisak, Poonsuta
Wongsripuemtet, Jittsupa
Kingchan, Siripra
Angkoondittaphong, Phuriwat
Phawaphutanon, Phattaranan
Supratak, Akara
author_facet Songsaeng, Dittapong
Nava-apisak, Poonsuta
Wongsripuemtet, Jittsupa
Kingchan, Siripra
Angkoondittaphong, Phuriwat
Phawaphutanon, Phattaranan
Supratak, Akara
author_sort Songsaeng, Dittapong
collection PubMed
description Diagnosing normal-pressure hydrocephalus (NPH) via non-contrast computed tomography (CT) brain scans is presently a formidable task due to the lack of universally agreed-upon standards for radiographic parameter measurement. A variety of radiological parameters, such as Evans’ index, narrow sulci at high parietal convexity, Sylvian fissures’ dilation, focally enlarged sulci, and more, are currently measured by radiologists. This study aimed to enhance NPH diagnosis by comparing the accuracy, sensitivity, specificity, and predictive values of radiological parameters, as evaluated by radiologists and AI methods, utilizing cerebrospinal fluid volumetry. Results revealed a sensitivity of 77.14% for radiologists and 99.05% for AI, with specificities of 98.21% and 57.14%, respectively, in diagnosing NPH. Radiologists demonstrated NPV, PPV, and an accuracy of 82.09%, 97.59%, and 88.02%, while AI reported 98.46%, 68.42%, and 77.42%, respectively. ROC curves exhibited an area under the curve of 0.954 for radiologists and 0.784 for AI, signifying the diagnostic index for NPH. In conclusion, although radiologists exhibited superior sensitivity, specificity, and accuracy in diagnosing NPH, AI served as an effective initial screening mechanism for potential NPH cases, potentially easing the radiologists’ burden. Given the ongoing AI advancements, it is plausible that AI could eventually match or exceed radiologists’ diagnostic prowess in identifying hydrocephalus.
format Online
Article
Text
id pubmed-10486480
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104864802023-09-09 The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain Songsaeng, Dittapong Nava-apisak, Poonsuta Wongsripuemtet, Jittsupa Kingchan, Siripra Angkoondittaphong, Phuriwat Phawaphutanon, Phattaranan Supratak, Akara Diagnostics (Basel) Article Diagnosing normal-pressure hydrocephalus (NPH) via non-contrast computed tomography (CT) brain scans is presently a formidable task due to the lack of universally agreed-upon standards for radiographic parameter measurement. A variety of radiological parameters, such as Evans’ index, narrow sulci at high parietal convexity, Sylvian fissures’ dilation, focally enlarged sulci, and more, are currently measured by radiologists. This study aimed to enhance NPH diagnosis by comparing the accuracy, sensitivity, specificity, and predictive values of radiological parameters, as evaluated by radiologists and AI methods, utilizing cerebrospinal fluid volumetry. Results revealed a sensitivity of 77.14% for radiologists and 99.05% for AI, with specificities of 98.21% and 57.14%, respectively, in diagnosing NPH. Radiologists demonstrated NPV, PPV, and an accuracy of 82.09%, 97.59%, and 88.02%, while AI reported 98.46%, 68.42%, and 77.42%, respectively. ROC curves exhibited an area under the curve of 0.954 for radiologists and 0.784 for AI, signifying the diagnostic index for NPH. In conclusion, although radiologists exhibited superior sensitivity, specificity, and accuracy in diagnosing NPH, AI served as an effective initial screening mechanism for potential NPH cases, potentially easing the radiologists’ burden. Given the ongoing AI advancements, it is plausible that AI could eventually match or exceed radiologists’ diagnostic prowess in identifying hydrocephalus. MDPI 2023-09-01 /pmc/articles/PMC10486480/ /pubmed/37685378 http://dx.doi.org/10.3390/diagnostics13172840 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Songsaeng, Dittapong
Nava-apisak, Poonsuta
Wongsripuemtet, Jittsupa
Kingchan, Siripra
Angkoondittaphong, Phuriwat
Phawaphutanon, Phattaranan
Supratak, Akara
The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_full The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_fullStr The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_full_unstemmed The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_short The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain
title_sort diagnostic accuracy of artificial intelligence in radiological markers of normal-pressure hydrocephalus (nph) on non-contrast ct scans of the brain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486480/
https://www.ncbi.nlm.nih.gov/pubmed/37685378
http://dx.doi.org/10.3390/diagnostics13172840
work_keys_str_mv AT songsaengdittapong thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT navaapisakpoonsuta thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT wongsripuemtetjittsupa thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT kingchansiripra thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT angkoondittaphongphuriwat thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT phawaphutanonphattaranan thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT supratakakara thediagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT songsaengdittapong diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT navaapisakpoonsuta diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT wongsripuemtetjittsupa diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT kingchansiripra diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT angkoondittaphongphuriwat diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT phawaphutanonphattaranan diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain
AT supratakakara diagnosticaccuracyofartificialintelligenceinradiologicalmarkersofnormalpressurehydrocephalusnphonnoncontrastctscansofthebrain