Cargando…
Deep-Learning-Based Dose Predictor for Glioblastoma–Assessing the Sensitivity and Robustness for Dose Awareness in Contouring
SIMPLE SUMMARY: For accurate radiotherapy, a clear definition of the geometric extent of organs and tumor volumes is important. Due to the laborious task of manually drawing contours to define these, automatic segmentation models are becoming increasingly available. These models, however, need to be...
Autores principales: | Poel, Robert, Kamath, Amith J., Willmann, Jonas, Andratschke, Nicolaus, Ermiş, Ekin, Aebersold, Daniel M., Manser, Peter, Reyes, Mauricio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486555/ https://www.ncbi.nlm.nih.gov/pubmed/37686501 http://dx.doi.org/10.3390/cancers15174226 |
Ejemplares similares
-
Impact of random outliers in auto-segmented targets on radiotherapy treatment plans for glioblastoma
por: Poel, Robert, et al.
Publicado: (2022) -
Fully automated brain resection cavity delineation for radiation target volume definition in glioblastoma patients using deep learning
por: Ermiş, Ekin, et al.
Publicado: (2020) -
Vestibular dose correlates with dizziness after radiosurgery for the treatment of vestibular schwannoma
por: Ermiş, Ekin, et al.
Publicado: (2021) -
Prospective randomized clinical studies involving reirradiation: update of a systematic review
por: Nieder, Carsten, et al.
Publicado: (2023) -
Feasibility of postoperative spine stereotactic body radiation therapy in proximity of carbon and titanium hybrid implants using a robotic radiotherapy device
por: Henzen, Dominik, et al.
Publicado: (2022)