Cargando…

Automatic Segmentation with Deep Learning in Radiotherapy

SIMPLE SUMMARY: Automatic segmentation of organs and other regions of interest is a promising approach for reducing the workload of doctors in radiotherapeutic planning, but it can be hard for doctors and researchers to keep up with current developments. This review evaluates 807 papers and reveals...

Descripción completa

Detalles Bibliográficos
Autores principales: Isaksson, Lars Johannes, Summers, Paul, Mastroleo, Federico, Marvaso, Giulia, Corrao, Giulia, Vincini, Maria Giulia, Zaffaroni, Mattia, Ceci, Francesco, Petralia, Giuseppe, Orecchia, Roberto, Jereczek-Fossa, Barbara Alicja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486603/
https://www.ncbi.nlm.nih.gov/pubmed/37686665
http://dx.doi.org/10.3390/cancers15174389
Descripción
Sumario:SIMPLE SUMMARY: Automatic segmentation of organs and other regions of interest is a promising approach for reducing the workload of doctors in radiotherapeutic planning, but it can be hard for doctors and researchers to keep up with current developments. This review evaluates 807 papers and reveals trends, commonalities, and gaps in the existing corpus. A set of recommendations for conducting effective segmentation studies is also provided. ABSTRACT: This review provides a formal overview of current automatic segmentation studies that use deep learning in radiotherapy. It covers 807 published papers and includes multiple cancer sites, image types (CT/MRI/PET), and segmentation methods. We collect key statistics about the papers to uncover commonalities, trends, and methods, and identify areas where more research might be needed. Moreover, we analyzed the corpus by posing explicit questions aimed at providing high-quality and actionable insights, including: “What should researchers think about when starting a segmentation study?”, “How can research practices in medical image segmentation be improved?”, “What is missing from the current corpus?”, and more. This allowed us to provide practical guidelines on how to conduct a good segmentation study in today’s competitive environment that will be useful for future research within the field, regardless of the specific radiotherapeutic subfield. To aid in our analysis, we used the large language model ChatGPT to condense information.