Cargando…
Automatic Segmentation with Deep Learning in Radiotherapy
SIMPLE SUMMARY: Automatic segmentation of organs and other regions of interest is a promising approach for reducing the workload of doctors in radiotherapeutic planning, but it can be hard for doctors and researchers to keep up with current developments. This review evaluates 807 papers and reveals...
Autores principales: | Isaksson, Lars Johannes, Summers, Paul, Mastroleo, Federico, Marvaso, Giulia, Corrao, Giulia, Vincini, Maria Giulia, Zaffaroni, Mattia, Ceci, Francesco, Petralia, Giuseppe, Orecchia, Roberto, Jereczek-Fossa, Barbara Alicja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486603/ https://www.ncbi.nlm.nih.gov/pubmed/37686665 http://dx.doi.org/10.3390/cancers15174389 |
Ejemplares similares
-
Upfront Advanced Radiotherapy and New Drugs for NSCLC Patients with Synchronous Brain Metastases: Is the Juice Worth the Squeeze? A Real-World Analysis from Lombardy, Italy
por: Corrao, Giulia, et al.
Publicado: (2023) -
Unraveling Mitochondrial Determinants of Tumor Response to Radiation Therapy
por: Zaffaroni, Mattia, et al.
Publicado: (2022) -
A Bibliometric Analysis of the Oligometastatic State over the Last Two Decades: A Shifting Paradigm for Oncology? An AIRO Oligometastatic Study Group
por: Marvaso, Giulia, et al.
Publicado: (2023) -
Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy
por: Isaksson, Lars J., et al.
Publicado: (2020) -
Comparison of automated segmentation techniques for magnetic resonance images of the prostate
por: Isaksson, Lars Johannes, et al.
Publicado: (2023)